Dam Deformation Data Preprocessing with Optimized Variational Mode Decomposition and Kernel Density Estimation

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote Sensing vol. 17, no. 4 (2025), p. 718
Hlavní autor: Chen, Siyu
Další autoři: Lin, Chaoning, Gu, Yanchang, Sheng, Jinbao, Mohammad Amin Hariri-Ardebili
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Abstrakt:Deformation is one of the critical response quantities reflecting the structural safety of dams. To enhance outlier identification and denoising in dam deformation monitoring data, this study proposes a novel preprocessing method based on optimized Variational Mode Decomposition (VMD) and Kernel Density Estimation (KDE). The approach systematically processes data in three steps: First, VMD decomposes raw data into intrinsic mode functions without recursion. The parallel Jaya algorithm is used to adaptively optimize VMD parameters for improved decomposition. Second, the intrinsic mode functions containing outlier and noise characteristics are identified and separated using sample entropy and correlation coefficients. Finally, KDE thresholds are applied for outlier localization, while a data superposition method ensures effective denoising. Validation using simulated deformation data and Global Navigation Satellite Systems (GNSS)-based observed horizontal deformation from dam engineering demonstrates the method’s robustness in accurately identifying outliers and denoising data, achieving superior preprocessing performance.
ISSN:2072-4292
DOI:10.3390/rs17040718
Zdroj:Advanced Technologies & Aerospace Database