An Experiment with LLMs as Database Design Tutors: Persistent Equity and Fairness Challenges in Online Learning

Salvato in:
Dettagli Bibliografici
Pubblicato in:Education Sciences vol. 15, no. 3 (2025), p. 386
Autore principale: Jamil, Hasan M
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3181430174
003 UK-CbPIL
022 |a 2227-7102 
022 |a 2076-3344 
024 7 |a 10.3390/educsci15030386  |2 doi 
035 |a 3181430174 
045 2 |b d20250101  |b d20251231 
084 |a 231457  |2 nlm 
100 1 |a Jamil, Hasan M 
245 1 |a An Experiment with LLMs as Database Design Tutors: Persistent Equity and Fairness Challenges in Online Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a As large language models (LLMs) continue to evolve, their capacity to replace humans as their surrogates is also improving. As increasing numbers of intelligent tutoring systems (ITSs) are embracing the integration of LLMs for digital tutoring, questions are arising as to how effective they are and if their hallucinatory behaviors diminish their perceived advantages. One critical question that is seldom asked if the availability, plurality, and relative weaknesses in the reasoning process of LLMs are contributing to the much discussed digital divide and equity and fairness in online learning. In this paper, we present an experiment with database design theory assignments and demonstrate that while their capacity to reason logically is improving, LLMs are still prone to serious errors. We demonstrate that in online learning and in the absence of a human instructor, LLMs could introduce inequity in the form of “wrongful” tutoring that could be devastatingly harmful for learners, which we call ignorant bias, in increasingly popular digital learning. We also show that significant challenges remain for STEM subjects, especially for subjects for which sound and free online tutoring systems exist. Based on the set of use cases, we formulate a possible direction for an effective ITS for online database learning classes of the future. 
610 4 |a Griffith University 
653 |a Teaching 
653 |a Tutoring 
653 |a Dependency theory 
653 |a Online instruction 
653 |a Design 
653 |a Calculators 
653 |a Database design 
653 |a Distance learning 
653 |a Education 
653 |a Chatbots 
653 |a Large language models 
653 |a Databases 
653 |a Mathematics Instruction 
653 |a Electronic Learning 
653 |a Online Systems 
653 |a Intelligent Tutoring Systems 
653 |a Influence of Technology 
653 |a Educational Assessment 
653 |a Distance Education 
653 |a Database Management Systems 
653 |a Algorithms 
773 0 |t Education Sciences  |g vol. 15, no. 3 (2025), p. 386 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181430174/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181430174/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181430174/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch