Physical twinning for joint encoding-decoding optimization in computational optics: a review

Sparad:
Bibliografiska uppgifter
I publikationen:Light: Science and Applications vol. 14, no. 1 (2025), p. 162
Utgiven:
Springer Nature B.V.
Ämnen:
Länkar:Citation/Abstract
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3190021937
003 UK-CbPIL
022 |a 2047-7538 
024 7 |a 10.1038/s41377-025-01810-4  |2 doi 
035 |a 3190021937 
045 2 |b d20250101  |b d20251231 
084 |a 274847  |2 nlm 
245 1 |a Physical twinning for joint encoding-decoding optimization in computational optics: a review 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a Computational optics introduces computation into optics and consequently helps overcome traditional optical limitations such as low sensing dimension, low light throughput, low resolution, and so on. The combination of optical encoding and computational decoding offers enhanced imaging and sensing capabilities with diverse applications in biomedicine, astronomy, agriculture, etc. With the great advance of artificial intelligence in the last decade, deep learning has further boosted computational optics with higher precision and efficiency. Recently, there developed an end-to-end joint optimization technique that digitally twins optical encoding to neural network layers, and then facilitates simultaneous optimization with the decoding process. This framework offers effective performance enhancement over conventional techniques. However, the reverse physical twinning from optimized encoding parameters to practical modulation elements faces a serious challenge, due to the discrepant gap in such as bit depth, numerical range, and stability. In this regard, this review explores various optical modulation elements across spatial, phase, and spectral dimensions in the digital twin model for joint encoding-decoding optimization. Our analysis offers constructive guidance for finding the most appropriate modulation element in diverse imaging and sensing tasks concerning various requirements of precision, speed, and robustness. The review may help tackle the above twinning challenge and pave the way for next-generation computational optics. 
653 |a Optics 
653 |a Computer applications 
653 |a Artificial intelligence 
653 |a Optimization techniques 
653 |a Reviews 
653 |a Deep learning 
653 |a Neural networks 
773 0 |t Light: Science and Applications  |g vol. 14, no. 1 (2025), p. 162 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3190021937/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3190021937/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch