Efficiently Collecting Training Dataset for 2D Object Detection by Online Visual Feedback

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Robotics and Mechatronics vol. 37, no. 2 (Apr 2025), p. 270
Autor principal: Kiyokawa Takuya
Otros Autores: Shirakura Naoki, Katayama Hiroki, Tomochika Keita, Takamatsu, Jun
Publicado:
Fuji Technology Press Co. Ltd.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Training deep-learning-based vision systems requires the manual annotation of a significant number of images. Such manual annotation is highly time-consuming and labor-intensive. Although previous studies attempted to eliminate the effort required for annotation, the effort required for image collection was retained. To address this issue, we propose a human-in-the-loop dataset-collection method using a web application. To counterbalance workload and performance by encouraging the collection of multi-view object image datasets enjoyably, thereby amplifying motivation, we propose three types of online visual feedback features to track the progress of the collection status. Our experiments thoroughly investigated the influence of each feature on the collection performance and quality of operation. These results indicate the feasibility of annotation and object detection.
ISSN:0915-3942
1883-8049
DOI:10.20965/jrm.2025.p0270
Fuente:Advanced Technologies & Aerospace Database