Efficiently Collecting Training Dataset for 2D Object Detection by Online Visual Feedback

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Journal of Robotics and Mechatronics vol. 37, no. 2 (Apr 2025), p. 270
Үндсэн зохиолч: Kiyokawa Takuya
Бусад зохиолчид: Shirakura Naoki, Katayama Hiroki, Tomochika Keita, Takamatsu, Jun
Хэвлэсэн:
Fuji Technology Press Co. Ltd.
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!
Тодорхойлолт
Хураангуй:Training deep-learning-based vision systems requires the manual annotation of a significant number of images. Such manual annotation is highly time-consuming and labor-intensive. Although previous studies attempted to eliminate the effort required for annotation, the effort required for image collection was retained. To address this issue, we propose a human-in-the-loop dataset-collection method using a web application. To counterbalance workload and performance by encouraging the collection of multi-view object image datasets enjoyably, thereby amplifying motivation, we propose three types of online visual feedback features to track the progress of the collection status. Our experiments thoroughly investigated the influence of each feature on the collection performance and quality of operation. These results indicate the feasibility of annotation and object detection.
ISSN:0915-3942
1883-8049
DOI:10.20965/jrm.2025.p0270
Эх сурвалж:Advanced Technologies & Aerospace Database