Efficiently Collecting Training Dataset for 2D Object Detection by Online Visual Feedback

Salvato in:
Dettagli Bibliografici
Pubblicato in:Journal of Robotics and Mechatronics vol. 37, no. 2 (Apr 2025), p. 270
Autore principale: Kiyokawa Takuya
Altri autori: Shirakura Naoki, Katayama Hiroki, Tomochika Keita, Takamatsu, Jun
Pubblicazione:
Fuji Technology Press Co. Ltd.
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3191586125
003 UK-CbPIL
022 |a 0915-3942 
022 |a 1883-8049 
024 7 |a 10.20965/jrm.2025.p0270  |2 doi 
035 |a 3191586125 
045 2 |b d20250401  |b d20250430 
100 1 |a Kiyokawa Takuya  |u Osaka University 1-3 Machikaneyama, Toyonaka, Osaka 560-0043, Japan kiyokawa@sys.es.osaka-u.ac.jp 
245 1 |a Efficiently Collecting Training Dataset for 2D Object Detection by Online Visual Feedback 
260 |b Fuji Technology Press Co. Ltd.  |c Apr 2025 
513 |a Journal Article 
520 3 |a Training deep-learning-based vision systems requires the manual annotation of a significant number of images. Such manual annotation is highly time-consuming and labor-intensive. Although previous studies attempted to eliminate the effort required for annotation, the effort required for image collection was retained. To address this issue, we propose a human-in-the-loop dataset-collection method using a web application. To counterbalance workload and performance by encouraging the collection of multi-view object image datasets enjoyably, thereby amplifying motivation, we propose three types of online visual feedback features to track the progress of the collection status. Our experiments thoroughly investigated the influence of each feature on the collection performance and quality of operation. These results indicate the feasibility of annotation and object detection. 
653 |a Datasets 
653 |a Images 
653 |a Annotations 
653 |a Object recognition 
653 |a Applications programs 
653 |a Feedback 
653 |a Vision systems 
653 |a Collection 
653 |a Cameras 
653 |a Usability 
653 |a Deep learning 
653 |a Questionnaires 
653 |a Workloads 
653 |a Crowdsourcing 
653 |a Efficiency 
653 |a Robotics 
700 1 |a Shirakura Naoki  |u National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan 
700 1 |a Katayama Hiroki  |u Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan 
700 1 |a Tomochika Keita  |u Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan 
700 1 |a Takamatsu, Jun  |u Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan 
773 0 |t Journal of Robotics and Mechatronics  |g vol. 37, no. 2 (Apr 2025), p. 270 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3191586125/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3191586125/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch