Power Ultrasound- and Organic Acid-Based Hurdle Technology to Reduce Listeria monocytogenes and Salmonella enterica on Whole Apples and Peaches

Guardado en:
Detalles Bibliográficos
Publicado en:Foods vol. 14, no. 10 (2025), p. 1744
Autor principal: Khouja, Bashayer A
Otros Autores: Mathias Hina, Joshi Mayura, Fay, Megan L, Korade Supriya, Wong Catherine W. Y., Stewart, Diana S, Zhou, Xinyi, Zhang, Wei, Salazar, Joelle K
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3211963456
003 UK-CbPIL
022 |a 2304-8158 
024 7 |a 10.3390/foods14101744  |2 doi 
035 |a 3211963456 
045 2 |b d20250515  |b d20250531 
084 |a 231462  |2 nlm 
100 1 |a Khouja, Bashayer A  |u Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL 60501, USA 
245 1 |a Power Ultrasound- and Organic Acid-Based Hurdle Technology to Reduce <i>Listeria monocytogenes</i> and <i>Salmonella enterica</i> on Whole Apples and Peaches 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Fresh produce, such as peaches and apples, are agricultural commodities, making them susceptible to contamination by foodborne pathogens such as Listeria monocytogenes and Salmonella enterica. Traditional methods, such as chlorine washes, have limitations related to antimicrobial efficacy, prompting interest in alternative techniques, such as power ultrasound. This study evaluated the use of power ultrasound, alone and combined with organic acids (citric, lactic, and malic), to reduce pathogen populations on whole apples and peaches. Pathogen cocktails of L. monocytogenes and S. enterica were spot-inoculated on fruit surfaces at an initial population level of 8–9 log CFU/fruit. The fruits were then submerged in water or citric, malic, or lactic acid at concentrations of 1%, 2%, or 5% alone or with power ultrasound treatment at 40 kHz for 2, 5, or 10 min. Results revealed that treatment conditions on apples exhibited significantly greater pathogen reduction than on peaches, likely due to the smoother surface topology on apples compared to the rougher, trichome-covered peach surfaces. Between the two pathogens, L. monocytogenes exhibited significantly greater resistance to treatments, resulting in maximum reductions of approximately 4 log CFU/fruit. In contrast, treatments were more effective against S. enterica, as lactic acid alone reduced S. enterica populations by >6 log CFU/fruit. Malic acid was the second-most effective organic acid against S. enterica, leading to >4 log CFU/fruit reduction. Synergistic antimicrobial effects were observed when organic acids were used in combination with power ultrasound. For instance, an additional reduction of 2–3 log CFU/fruit was achieved for S. enterica compared to the use of organic acid treatments alone. These findings support the use of organic acid and power ultrasound in hurdle as an effective strategy to mitigate foodborne pathogen risks on whole fruits such as apples and peaches. Further research would be helpful to optimize and validate such hurdle treatments for inactivating a broader spectrum of microbial pathogens on diverse produce surfaces. 
651 4 |a United States--US 
653 |a Food safety 
653 |a Pathogens 
653 |a Acids 
653 |a Lactic acid 
653 |a Food contamination & poisoning 
653 |a Listeria 
653 |a Malic acid 
653 |a Salmonella 
653 |a Fruits 
653 |a Ultrasonic processing 
653 |a Topology 
653 |a Chlorine 
653 |a Peaches 
653 |a Hospitalization 
653 |a Foodborne pathogens 
653 |a Microorganisms 
653 |a Organic acids 
653 |a Apples 
653 |a Populations 
653 |a Effectiveness 
653 |a Ultrasound 
653 |a Antimicrobial agents 
653 |a Agricultural commodities 
653 |a Food contamination 
653 |a Antimicrobial activity 
653 |a Ultrasonic imaging 
653 |a Variance analysis 
653 |a Health risks 
653 |a Microbiota 
653 |a Listeria monocytogenes 
653 |a Salmonella enterica 
700 1 |a Mathias Hina  |u Illinois Institute of Technology, Department of Food Science and Nutrition, Bedford Park, IL 60501, USA 
700 1 |a Joshi Mayura  |u Illinois Institute of Technology, Department of Food Science and Nutrition, Bedford Park, IL 60501, USA 
700 1 |a Fay, Megan L  |u Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL 60501, USA 
700 1 |a Korade Supriya  |u Illinois Institute of Technology, Department of Food Science and Nutrition, Bedford Park, IL 60501, USA 
700 1 |a Wong Catherine W. Y.  |u Illinois Institute of Technology, Department of Food Science and Nutrition, Bedford Park, IL 60501, USA 
700 1 |a Stewart, Diana S  |u Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL 60501, USA 
700 1 |a Zhou, Xinyi  |u Illinois Institute of Technology, Department of Food Science and Nutrition, Bedford Park, IL 60501, USA 
700 1 |a Zhang, Wei  |u Illinois Institute of Technology, Department of Food Science and Nutrition, Bedford Park, IL 60501, USA 
700 1 |a Salazar, Joelle K  |u Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL 60501, USA 
773 0 |t Foods  |g vol. 14, no. 10 (2025), p. 1744 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3211963456/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3211963456/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3211963456/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch