Advanced multi-objective trajectory planning for robotic arms using a multi-strategy enhanced NSGA-II algorithm

Salvato in:
Dettagli Bibliografici
Pubblicato in:PLoS One vol. 20, no. 5 (May 2025), p. e0324567
Autore principale: Fan, Yanqin
Altri autori: Peng, Yinan, Liu, Jianlin
Pubblicazione:
Public Library of Science
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3213835034
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0324567  |2 doi 
035 |a 3213835034 
045 2 |b d20250501  |b d20250531 
084 |a 174835  |2 nlm 
100 1 |a Fan, Yanqin 
245 1 |a Advanced multi-objective trajectory planning for robotic arms using a multi-strategy enhanced NSGA-II algorithm 
260 |b Public Library of Science  |c May 2025 
513 |a Journal Article 
520 3 |a Facing the problems of large-scale rapid and disorderly loading, the robotic arm has the problems of large start-stop impact, easy to shake, and reduced production efficiency and service life, this paper proposes a robotic arm motion planning method based on the improved multi-objective algorithm called LNSGA-II. Firstly, the artificial potential field method is used to plan the shortest path without collision, extract the key motion sequences, and establish the multi-objective function to improve the operating efficiency of the robotic arm, the smoothness of the motion trajectory, and the reduction of energy consumption. Then to solve the nonlinear constraints in the multi-objective trajectory planning, the infeasibility degree is designed, and the NSGA-II is improved by using the mutation chaos strategy and the dynamic goal-oriented development strategy. Numerical and trajectory planning experiments are conducted successively with the remaining five well-known multi-objective algorithms, and the experimental results demonstrate the superiority of LNSGA-II. Finally, the digital twin platform of MATLAB-CoppeliaSim-UR16e verifies the effectiveness of the method in real grasping tasks. 
651 4 |a China 
653 |a Potential fields 
653 |a Strategy 
653 |a Algorithms 
653 |a Optimization 
653 |a Robots 
653 |a Service life 
653 |a Multiple objective analysis 
653 |a Manufacturing 
653 |a Energy consumption 
653 |a Industrial Revolution 
653 |a Motion planning 
653 |a Efficiency 
653 |a Robotics 
653 |a Smoothness 
653 |a Robot arms 
653 |a Digital twins 
653 |a Experiments 
653 |a Genetic algorithms 
653 |a Development strategies 
653 |a Objective function 
653 |a Methods 
653 |a Sequences 
653 |a Shortest path planning 
653 |a Trajectory planning 
653 |a Economic 
700 1 |a Peng, Yinan 
700 1 |a Liu, Jianlin 
773 0 |t PLoS One  |g vol. 20, no. 5 (May 2025), p. e0324567 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3213835034/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3213835034/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3213835034/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch