FL‐ADS: Federated learning anomaly detection system for distributed energy resource networks

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:IET Cyber-Physical Systems : Theory & Applications vol. 10, no. 1 (Jan/Dec 2025)
المؤلف الرئيسي: Purohit, Shaurya
مؤلفون آخرون: Govindarasu, Manimaran, Blakely, Benjamin
منشور في:
John Wiley & Sons, Inc.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:With the ongoing development of Distributed Energy Resources (DER) communication networks, the imperative for strong cybersecurity and data privacy safeguards is increasingly evident. DER networks, which rely on protocols such as Distributed Network Protocol 3 and Modbus, are susceptible to cyberattacks such as data integrity breaches and denial of service due to their inherent security vulnerabilities. This paper introduces an innovative Federated Learning (FL)‐based anomaly detection system designed to enhance the security of DER networks while preserving data privacy. Our models leverage Vertical and Horizontal Federated Learning to enable collaborative learning while preserving data privacy, exchanging only non‐sensitive information, such as model parameters, and maintaining the privacy of DER clients' raw data. The effectiveness of the models is demonstrated through its evaluation on datasets representative of real‐world DER scenarios, showcasing significant improvements in accuracy and F1‐score across all clients compared to the traditional baseline model. Additionally, this work demonstrates a consistent reduction in loss function over multiple FL rounds, further validating its efficacy and offering a robust solution that balances effective anomaly detection with stringent data privacy needs.
تدمد:2398-3396
DOI:10.1049/cps2.70001
المصدر:Advanced Technologies & Aerospace Database