Enhancing Dense-Scene Millet Appearance Quality Inspection Based on YOLO11s with Overlap-Partitioning Strategy for Procurement

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:Agronomy vol. 15, no. 6 (2025), p. 1284
Հիմնական հեղինակ: He Leilei
Այլ հեղինակներ: Ruiyang, Wei, Ding Yusong, Huang Juncai, Wei, Xin, Li, Rui, Wang, Shaojin, Fu Longsheng
Հրապարակվել է:
MDPI AG
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!
Նկարագրություն
Համառոտագրություն:Accurate millet appearance quality assessment is critical for fair procurement pricing. Traditional manual inspection is time-consuming and subjective, necessitating an automated solution. This study proposes a machine-vision-based approach using deep learning for dense-scene millet detection and quality evaluation. High-resolution images of standardized millet samples were collected via smartphone and annotated into seven categories covering impurities, high-quality grains, and various defects. To address the challenges with small object detection and feature loss, the YOLO11s model with an overlap-partitioning strategy were introduced, dividing the high-resolution images into smaller patches for improved object representation. The experimental results show that the optimized model achieved a mean average precision (mAP) of 94.8%, significantly outperforming traditional whole-image detection with a mAP of 15.9%. The optimized model was deployed in a custom-developed mobile application, enabling low-cost, real-time millet inspection directly on smartphones. It can process full-resolution images (4608 × 3456 pixels) containing over 5000 kernels within 6.8 s. This work provides a practical solution for on-site quality evaluation in procurement and contributes to real-time agricultural inspection systems.
ISSN:2073-4395
DOI:10.3390/agronomy15061284
Աղբյուր:Agriculture Science Database