Enhancing Dense-Scene Millet Appearance Quality Inspection Based on YOLO11s with Overlap-Partitioning Strategy for Procurement
Salvato in:
| Pubblicato in: | Agronomy vol. 15, no. 6 (2025), p. 1284 |
|---|---|
| Autore principale: | |
| Altri autori: | , , , , , , |
| Pubblicazione: |
MDPI AG
|
| Soggetti: | |
| Accesso online: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Tags: |
Nessun Tag, puoi essere il primo ad aggiungerne!!
|
| Abstract: | Accurate millet appearance quality assessment is critical for fair procurement pricing. Traditional manual inspection is time-consuming and subjective, necessitating an automated solution. This study proposes a machine-vision-based approach using deep learning for dense-scene millet detection and quality evaluation. High-resolution images of standardized millet samples were collected via smartphone and annotated into seven categories covering impurities, high-quality grains, and various defects. To address the challenges with small object detection and feature loss, the YOLO11s model with an overlap-partitioning strategy were introduced, dividing the high-resolution images into smaller patches for improved object representation. The experimental results show that the optimized model achieved a mean average precision (mAP) of 94.8%, significantly outperforming traditional whole-image detection with a mAP of 15.9%. The optimized model was deployed in a custom-developed mobile application, enabling low-cost, real-time millet inspection directly on smartphones. It can process full-resolution images (4608 × 3456 pixels) containing over 5000 kernels within 6.8 s. This work provides a practical solution for on-site quality evaluation in procurement and contributes to real-time agricultural inspection systems. |
|---|---|
| ISSN: | 2073-4395 |
| DOI: | 10.3390/agronomy15061284 |
| Fonte: | Agriculture Science Database |