Enhancing Dense-Scene Millet Appearance Quality Inspection Based on YOLO11s with Overlap-Partitioning Strategy for Procurement

Guardat en:
Dades bibliogràfiques
Publicat a:Agronomy vol. 15, no. 6 (2025), p. 1284
Autor principal: He Leilei
Altres autors: Ruiyang, Wei, Ding Yusong, Huang Juncai, Wei, Xin, Li, Rui, Wang, Shaojin, Fu Longsheng
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3223865162
003 UK-CbPIL
022 |a 2073-4395 
024 7 |a 10.3390/agronomy15061284  |2 doi 
035 |a 3223865162 
045 2 |b d20250101  |b d20251231 
084 |a 231332  |2 nlm 
100 1 |a He Leilei  |u College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, Chinawx130@nwafu.edu.cn (X.W.); 
245 1 |a Enhancing Dense-Scene Millet Appearance Quality Inspection Based on YOLO11s with Overlap-Partitioning Strategy for Procurement 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate millet appearance quality assessment is critical for fair procurement pricing. Traditional manual inspection is time-consuming and subjective, necessitating an automated solution. This study proposes a machine-vision-based approach using deep learning for dense-scene millet detection and quality evaluation. High-resolution images of standardized millet samples were collected via smartphone and annotated into seven categories covering impurities, high-quality grains, and various defects. To address the challenges with small object detection and feature loss, the YOLO11s model with an overlap-partitioning strategy were introduced, dividing the high-resolution images into smaller patches for improved object representation. The experimental results show that the optimized model achieved a mean average precision (mAP) of 94.8%, significantly outperforming traditional whole-image detection with a mAP of 15.9%. The optimized model was deployed in a custom-developed mobile application, enabling low-cost, real-time millet inspection directly on smartphones. It can process full-resolution images (4608 × 3456 pixels) containing over 5000 kernels within 6.8 s. This work provides a practical solution for on-site quality evaluation in procurement and contributes to real-time agricultural inspection systems. 
653 |a Accuracy 
653 |a Deep learning 
653 |a Image resolution 
653 |a Smartphones 
653 |a Inspection 
653 |a Applications programs 
653 |a Procurement 
653 |a Impurities 
653 |a Image detection 
653 |a Mobile computing 
653 |a Grain 
653 |a Automation 
653 |a Millet 
653 |a Partitioning 
653 |a Quality assessment 
653 |a Machine vision 
653 |a Quality control 
653 |a High resolution 
653 |a Support vector machines 
653 |a Rice 
653 |a Image quality 
653 |a Object recognition 
653 |a Real time 
700 1 |a Ruiyang, Wei  |u College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, Chinawx130@nwafu.edu.cn (X.W.); 
700 1 |a Ding Yusong  |u College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, Chinawx130@nwafu.edu.cn (X.W.); 
700 1 |a Huang Juncai  |u College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, Chinawx130@nwafu.edu.cn (X.W.); 
700 1 |a Wei, Xin  |u College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, Chinawx130@nwafu.edu.cn (X.W.); 
700 1 |a Li, Rui  |u College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, Chinawx130@nwafu.edu.cn (X.W.); 
700 1 |a Wang, Shaojin  |u College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, Chinawx130@nwafu.edu.cn (X.W.); 
700 1 |a Fu Longsheng  |u College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, Chinawx130@nwafu.edu.cn (X.W.); 
773 0 |t Agronomy  |g vol. 15, no. 6 (2025), p. 1284 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223865162/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223865162/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223865162/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch