Coupled Electro-Thermal FEM with Geometric Symmetry Constraints for Modular Battery Pack Design

Guardado en:
Detalles Bibliográficos
Publicado en:Symmetry vol. 17, no. 6 (2025), p. 865-890
Autor principal: Liu Yingshuai
Otros Autores: Liu Chenxing, Tan, Jianwei, Tian Guangdong
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:This study investigates the structural integrity and dynamic behavior of symmetry-optimized battery pack systems for new energy vehicles through advanced finite element analysis. It examines symmetry-optimized battery pack systems with mechanically stable and thermally adaptive potentials. Leveraging geometric symmetry principles, a high-fidelity three-dimensional (3D) model was constructed in SolidWorks 2023 and subjected to symmetry-constrained static analysis on ANSYS Workbench 2021 R1 platform. The structural performance was systematically evaluated under three critical asymmetric loading scenarios: emergency left/right turns and braking conditions, with particular attention to symmetric stress distribution patterns. The numerical results confirmed the initial design’s compliance with mechanical requirements while revealing symmetric deformation characteristics in dominant mode shapes. Building upon symmetry-enhanced topology configuration, a novel lightweight strategy was implemented by substituting Q235 steel with ZL104 aluminum alloy. While mechanical symmetry has been widely studied, thermal gradients in battery packs can induce asymmetric expansions. For example, uneven cooling may cause localized warping in aluminum alloy shells. This multiphysics effect must be integrated into symmetry constraints to ensure true stability. Symmetric material distribution optimization reduced the mass by 19% while maintaining structural stability, as validated through comparative static and modal analyses. Notably, the symmetric eigenfrequency arrangement in optimized modules effectively avoids common vehicle excitation bands (8–12 Hz/25–35 Hz), demonstrating significant resonance risk reduction through frequency redistribution. This research establishes a symmetry-driven design paradigm that systematically coordinates structural efficiency with dynamic reliability, providing critical insights for developing next-generation battery systems with balanced performance characteristics.
ISSN:2073-8994
DOI:10.3390/sym17060865
Fuente:Engineering Database