Coupled Electro-Thermal FEM with Geometric Symmetry Constraints for Modular Battery Pack Design

Guardado en:
Detalles Bibliográficos
Publicado en:Symmetry vol. 17, no. 6 (2025), p. 865-890
Autor principal: Liu Yingshuai
Otros Autores: Liu Chenxing, Tan, Jianwei, Tian Guangdong
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3223941771
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17060865  |2 doi 
035 |a 3223941771 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Liu Yingshuai  |u School of Mechanical Engineering, Shandong Huayu University of Technology, Dezhou 253034, China; liuyingshuai1983@163.com 
245 1 |a Coupled Electro-Thermal FEM with Geometric Symmetry Constraints for Modular Battery Pack Design 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study investigates the structural integrity and dynamic behavior of symmetry-optimized battery pack systems for new energy vehicles through advanced finite element analysis. It examines symmetry-optimized battery pack systems with mechanically stable and thermally adaptive potentials. Leveraging geometric symmetry principles, a high-fidelity three-dimensional (3D) model was constructed in SolidWorks 2023 and subjected to symmetry-constrained static analysis on ANSYS Workbench 2021 R1 platform. The structural performance was systematically evaluated under three critical asymmetric loading scenarios: emergency left/right turns and braking conditions, with particular attention to symmetric stress distribution patterns. The numerical results confirmed the initial design’s compliance with mechanical requirements while revealing symmetric deformation characteristics in dominant mode shapes. Building upon symmetry-enhanced topology configuration, a novel lightweight strategy was implemented by substituting Q235 steel with ZL104 aluminum alloy. While mechanical symmetry has been widely studied, thermal gradients in battery packs can induce asymmetric expansions. For example, uneven cooling may cause localized warping in aluminum alloy shells. This multiphysics effect must be integrated into symmetry constraints to ensure true stability. Symmetric material distribution optimization reduced the mass by 19% while maintaining structural stability, as validated through comparative static and modal analyses. Notably, the symmetric eigenfrequency arrangement in optimized modules effectively avoids common vehicle excitation bands (8–12 Hz/25–35 Hz), demonstrating significant resonance risk reduction through frequency redistribution. This research establishes a symmetry-driven design paradigm that systematically coordinates structural efficiency with dynamic reliability, providing critical insights for developing next-generation battery systems with balanced performance characteristics. 
651 4 |a China 
653 |a Load 
653 |a Finite element method 
653 |a Risk management 
653 |a Performance evaluation 
653 |a Optimization techniques 
653 |a Electric vehicles 
653 |a Topology 
653 |a Structural steels 
653 |a Energy 
653 |a Outdoor air quality 
653 |a Killed steels 
653 |a Impact strength 
653 |a Symmetry 
653 |a Stress distribution 
653 |a Efficiency 
653 |a Design techniques 
653 |a Asymmetry 
653 |a Design optimization 
653 |a Carbon fibers 
653 |a Structural integrity 
653 |a Temperature gradients 
653 |a Working conditions 
653 |a Resonant frequencies 
653 |a Weight reduction 
653 |a Automobile industry 
653 |a Finite element analysis 
653 |a Performance characteristics 
653 |a Constraints 
653 |a Aluminum base alloys 
653 |a Structural stability 
700 1 |a Liu Chenxing  |u National Lab of Auto Performance and Emission Test, School of Mechanical and Vehicular Engineering, Beijing Institute of Technology, Beijing 100081, China; 19806281623@163.com 
700 1 |a Tan, Jianwei  |u National Lab of Auto Performance and Emission Test, School of Mechanical and Vehicular Engineering, Beijing Institute of Technology, Beijing 100081, China; 19806281623@163.com 
700 1 |a Tian Guangdong  |u School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; tiangd2013@163.com 
773 0 |t Symmetry  |g vol. 17, no. 6 (2025), p. 865-890 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223941771/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223941771/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223941771/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch