MARC

LEADER 00000nab a2200000uu 4500
001 3233129073
003 UK-CbPIL
022 |a 2227-7102 
022 |a 2076-3344 
024 7 |a 10.3390/educsci15070819  |2 doi 
035 |a 3233129073 
045 2 |b d20250101  |b d20251231 
084 |a 231457  |2 nlm 
100 1 |a Kheira, Ouassif  |u Laboratoire d’Informatique et de Mathématiques, Université Amar Telidji de Laghouat, Laghouat 03000, Algeria; kh.oucif@lagh-univ.dz (K.O.); bziani@lagh-univ.dz (B.Z.) 
245 1 |a Empowering Education: Leveraging Clustering and Recommendations for Enhanced Student Insights 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper introduces an unsupervised machine learning approach for student clustering and personalized recommendations in education. We employ the K-means clustering algorithm to identify distinct student groups based on behavioral engagement metrics. Unlike previous studies that relied on predefined categories, our methodology validated the number of clusters using both the elbow method and silhouette analysis, which ensured an optimal grouping structure. The clustering phase served as a foundation for deriving insights into student learning behaviors. To assess the clustering quality, we applied the silhouette score to quantify intra-cluster cohesion and inter-cluster separation, which provided statistical validation for our approach. Following the clustering process, we developed a recommendation system based on the user-based nearest neighbors collaborative filtering approach. This system tailors educational strategies to the unique characteristics of each cluster, enhancing student engagement and learning outcomes. Furthermore, we compared our methodology against alternative clustering and recommendation techniques to demonstrate its robustness and effectiveness. Our findings suggest that this combined clustering and recommendation framework offers a data-driven approach to personalized education, which can be extended beyond the KALBOARD360 dataset to other educational contexts. The overarching goal was to refine adaptive learning models that cater to the diverse needs of students, improving their academic success and participation. 
653 |a Parent participation 
653 |a Pedagogy 
653 |a Behavior 
653 |a Datasets 
653 |a Trends 
653 |a Curricula 
653 |a Recommender systems 
653 |a Student participation 
653 |a Clustering 
653 |a Distance learning 
653 |a Personalized learning 
653 |a Online instruction 
653 |a Learning analytics 
653 |a Methods 
653 |a Customization 
653 |a Education 
653 |a Adaptive learning 
653 |a Literature Reviews 
653 |a Distance Education 
653 |a Grouping (Instructional Purposes) 
653 |a Educational Methods 
653 |a Academic Achievement 
653 |a Behavior Patterns 
653 |a Profiles 
653 |a Educational Change 
653 |a Blended Learning 
653 |a Student Needs 
653 |a Parent School Relationship 
653 |a Psychological Patterns 
653 |a Educational Objectives 
653 |a Learning Management Systems 
653 |a Data Analysis 
653 |a MOOCs 
653 |a Outcomes of Education 
653 |a Educational Environment 
653 |a Behavioral Science Research 
653 |a Learner Engagement 
653 |a Educational Facilities Improvement 
653 |a Educational Strategies 
653 |a Algorithms 
700 1 |a Benameur, Ziani  |u Laboratoire d’Informatique et de Mathématiques, Université Amar Telidji de Laghouat, Laghouat 03000, Algeria; kh.oucif@lagh-univ.dz (K.O.); bziani@lagh-univ.dz (B.Z.) 
700 1 |a Herrera-Tapia, Jorge  |u Faculty of Computer Science (FACCI), Universidad Laica Eloy Alfaro de Manabí, Manta 130212, Ecuador 
700 1 |a Kerrache Chaker Abdelaziz  |u Laboratoire d’Informatique et de Mathématiques, Université Amar Telidji de Laghouat, Laghouat 03000, Algeria; kh.oucif@lagh-univ.dz (K.O.); bziani@lagh-univ.dz (B.Z.) 
773 0 |t Education Sciences  |g vol. 15, no. 7 (2025), p. 819-833 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233129073/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233129073/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233129073/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch