Visual Point Cloud Map Construction and Matching Localization for Autonomous Vehicle

Shranjeno v:
Bibliografske podrobnosti
izdano v:Drones vol. 9, no. 7 (2025), p. 511-536
Glavni avtor: Xu, Shuchen
Drugi avtorji: Zhao Kedong, Sun Yongrong, Fu Xiyu, Luo, Kang
Izdano:
MDPI AG
Teme:
Online dostop:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3233140492
003 UK-CbPIL
022 |a 2504-446X 
024 7 |a 10.3390/drones9070511  |2 doi 
035 |a 3233140492 
045 2 |b d20250101  |b d20251231 
100 1 |a Xu, Shuchen  |u College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 
245 1 |a Visual Point Cloud Map Construction and Matching Localization for Autonomous Vehicle 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Collaboration between autonomous vehicles and drones can enhance the efficiency and connectivity of three-dimensional transportation systems. When satellite signals are unavailable, vehicles can achieve accurate localization by matching rich ground environmental data to digital maps, simultaneously providing the auxiliary localization information for drones. However, conventional digital maps suffer from high construction costs, easy misalignment, and low localization accuracy. Thus, this paper proposes a visual point cloud map (VPCM) construction and matching localization for autonomous vehicles. We fuse multi-source information from vehicle-mounted sensors and the regional road network to establish the geographically high-precision VPCM. In the absence of satellite signals, we segment the prior VPCM on the road network based on real-time localization results, which accelerates matching speed and reduces mismatch probability. Simultaneously, by continuously introducing matching constraints of real-time point cloud and prior VPCM through improved iterative closest point matching method, the proposed solution can effectively suppress the drift error of the odometry and output accurate fusion localization results based on pose graph optimization theory. The experiments carried out on the KITTI datasets demonstrate the effectiveness of the proposed method, which can autonomously construct the high-precision prior VPCM. The localization strategy achieves sub-meter accuracy and reduces the average error per frame by 25.84% compared to similar methods. Subsequently, this method’s reusability and localization robustness under light condition changes and environment changes are verified using the campus dataset. Compared to the similar camera-based method, the matching success rate increased by 21.15%, and the average localization error decreased by 62.39%. 
653 |a Digital mapping 
653 |a Construction 
653 |a Datasets 
653 |a Cameras 
653 |a Accuracy 
653 |a Misalignment 
653 |a Roads & highways 
653 |a Matching 
653 |a Odometers 
653 |a Sensors 
653 |a Autonomous vehicles 
653 |a Transportation networks 
653 |a Mapping 
653 |a Transportation systems 
653 |a Vehicles 
653 |a Methods 
653 |a Errors 
653 |a Navigation systems 
653 |a Algorithms 
653 |a Construction costs 
653 |a Localization 
653 |a Real time 
653 |a Digital maps 
653 |a Semantics 
700 1 |a Zhao Kedong  |u College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 
700 1 |a Sun Yongrong  |u College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 
700 1 |a Fu Xiyu  |u College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 
700 1 |a Luo, Kang  |u College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 
773 0 |t Drones  |g vol. 9, no. 7 (2025), p. 511-536 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233140492/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233140492/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233140492/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch