Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies

Guardado en:
Detalles Bibliográficos
Publicado en:Foods vol. 14, no. 14 (2025), p. 2417-2448
Autor principal: Chandra, Prakash
Otros Autores: Mahar Rohit
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233189723
003 UK-CbPIL
022 |a 2304-8158 
024 7 |a 10.3390/foods14142417  |2 doi 
035 |a 3233189723 
045 2 |b d20250715  |b d20250731 
084 |a 231462  |2 nlm 
100 1 |a Chandra, Prakash 
245 1 |a Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR is widely applied for precise quantification of metabolites, authentication of food products, and monitoring of food quality. Low-field 1H-NMR relaxometry is an important technique for investigating the most abundant components of intact foodstuffs based on relaxation times and amplitude of the NMR signals. In particular, information on water compartments, diffusion, and movement can be obtained by detecting proton signals because of H2O in foodstuffs. Saffron adulterations with calendula, safflower, turmeric, sandalwood, and tartrazine have been analyzed using benchtop NMR, an alternative to the high-field NMR approach. The fraudulent addition of Robusta to Arabica coffee was investigated by 1H-NMR Spectroscopy and the marker of Robusta coffee can be detected in the 1H-NMR spectrum. MRI images can be a reliable tool for appreciating morphological differences in vegetables and fruits. In kiwifruit, the effects of water loss and the states of water were investigated using MRI. It provides informative images regarding the spin density distribution of water molecules and the relationship between water and cellular tissues. 1H-NMR spectra of aqueous extract of kiwifruits affected by elephantiasis show a higher number of small oligosaccharides than healthy fruits do. One of the frauds that has been detected in the olive oil sector reflects the addition of hazelnut oils to olive oils. However, using the NMR methodology, it is possible to distinguish the two types of oils, since, in hazelnut oils, linolenic fatty chains and squalene are absent, which is also indicated by the 1H-NMR spectrum. NMR has been applied to detect milk adulterations, such as bovine milk being spiked with known levels of whey, urea, synthetic urine, and synthetic milk. In particular, T2 relaxation time has been found to be significantly affected by adulteration as it increases with adulterant percentage. The 1H spectrum of honey samples from two botanical species shows the presence of signals due to the specific markers of two botanical species. NMR generates large datasets due to the complexity of food matrices and, to deal with this, chemometrics (multivariate analysis) can be applied to monitor the changes in the constituents of foodstuffs, assess the self-life, and determine the effects of storage conditions. Multivariate analysis could help in managing and interpreting complex NMR data by reducing dimensionality and identifying patterns. NMR spectroscopy followed by multivariate analysis can be channelized for evaluating the nutritional profile of food products by quantifying vitamins, sugars, fatty acids, amino acids, and other nutrients. In this review, we summarize the importance of NMR spectroscopy in chemical profiling and quality assessment of food products employing magnetic resonance technologies and multivariate statistical analysis. 
653 |a Hazelnut oil 
653 |a Datasets 
653 |a Food products 
653 |a Magnetic fields 
653 |a Food quality 
653 |a Oligosaccharides 
653 |a Multivariate analysis 
653 |a Metabolites 
653 |a Fruits 
653 |a Magnetic resonance spectroscopy 
653 |a Vitamins 
653 |a Spectroscopy 
653 |a Nuclear magnetic resonance--NMR 
653 |a Statistical analysis 
653 |a Milk 
653 |a Amino acids 
653 |a Spatial distribution 
653 |a Storage conditions 
653 |a Olive oil 
653 |a Tartrazine 
653 |a Squalene 
653 |a Quality control 
653 |a Water loss 
653 |a Hazelnuts 
653 |a Magnetic resonance imaging 
653 |a Synthetic food 
653 |a Multivariate statistical analysis 
653 |a Coffee 
653 |a Kiwifruit 
653 |a Water chemistry 
653 |a Medical imaging 
653 |a Chemical composition 
653 |a Quality assessment 
653 |a Nutrients 
653 |a Spectrum analysis 
653 |a Relaxation time 
653 |a Cow's milk 
653 |a NMR spectroscopy 
653 |a Variables 
653 |a Complexity 
653 |a Food 
653 |a Morphology 
653 |a Density distribution 
653 |a Honey 
700 1 |a Mahar Rohit 
773 0 |t Foods  |g vol. 14, no. 14 (2025), p. 2417-2448 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233189723/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233189723/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233189723/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch