Deep Neural Network-Based Design of Planar Coils for Proximity Sensing Applications

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors vol. 25, no. 14 (2025), p. 4429-4453
1. Verfasser: Lalla Abderraouf
Weitere Verfasser: Di Barba Paolo, Hausman Sławomir, Mognaschi Maria Evelina
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!
Beschreibung
Abstract:This study develops a deep learning procedure able to identify a planar coil geometry, given the desired magnetic field map. This approach demonstrates its capability to discover suitable coil designs that produce desired field characteristics with high accuracy and efficiency. The generated coils show strong agreement with target magnetic fields, enabling manufacturers to achieve simpler structures and improved performance. This method is suitable for inductive proximity sensors, wireless power transfer systems, and electromagnetic compatibility applications, offering a powerful and flexible tool for advanced planar coil design.
ISSN:1424-8220
DOI:10.3390/s25144429
Quelle:Health & Medical Collection