Prediction of Storage Quality and Multi-Objective Optimization of Storage Conditions for Fresh Lycium barbarum L. Based on Optimized Latin Hypercube Sampling

Shranjeno v:
Bibliografske podrobnosti
izdano v:Foods vol. 14, no. 16 (2025), p. 2807-2831
Glavni avtor: Mou Xiaobin
Drugi avtorji: Huang, Xiaopeng, Ma, Guojun, Luo Qi, Yang, Xiaoping, Shanglong, Xin, Wan Fangxin
Izdano:
MDPI AG
Teme:
Online dostop:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3244035681
003 UK-CbPIL
022 |a 2304-8158 
024 7 |a 10.3390/foods14162807  |2 doi 
035 |a 3244035681 
045 2 |b d20250815  |b d20250831 
084 |a 231462  |2 nlm 
100 1 |a Mou Xiaobin 
245 1 |a Prediction of Storage Quality and Multi-Objective Optimization of Storage Conditions for Fresh <i>Lycium barbarum</i> L. Based on Optimized Latin Hypercube Sampling 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Quality control of fresh Lycium barbarum during storage presents significant challenges, particularly regarding the unclear relationship between quality characteristics and storage conditions. This study analyzes the changes in qualitative and structural characteristics, including fruit hardness, soluble solid content (SSC), titratable acidity (TA), and vitamin C (Vc), under various storage conditions (temperature, duration, and initial maturity). We employed optimized Latin hypercubic sampling to develop radial basis function neural networks (RBFNNs) and Elman neural networks to establish predictive models for the quality characteristics of fresh wolfberry. Additionally, we applied the Particle Swarm Optimization (PSO) algorithm to determine the optimal solution for the constructed models. The results indicate a significant variation in how different storage conditions affect the quality characteristics. The established RBFNN predictive model exhibited the highest accuracy for TA and Vc during the storage of fresh wolfberry (R2 = 0.99, RMSE = 0.21 for TA; R2 = 0.99, RMSE = 0.19 for Vc), while the predictive performance for hardness and SSC was slightly lower (R2 = 0.98, RMSE = 385.78 for hardness; R2 = 0.94, RMSE = 2.611 for SSC). Multi-objective optimization led to the conclusion that the optimal storage conditions involve harvesting Lycium barbarum fruits at an initial maturity of 60% or greater and storing them for approximately 10 days at a temperature of 10 °C. Under these conditions, the fruit hardness was observed to be 15 N, with SSC at 17.5%, TA at 1.22%, and Vc at 18.5 mg/100 g. The validity of the prediction model was confirmed through multi-batch experimental verification. This study provides theoretical insights for predicting nutritional quality and informing storage condition decisions for other fresh fruits, including wolfberries. 
653 |a Physiology 
653 |a Particle swarm optimization 
653 |a Accuracy 
653 |a Agricultural production 
653 |a Quality control 
653 |a Regression analysis 
653 |a Fruits 
653 |a Vitamin C 
653 |a Ascorbic acid 
653 |a Hardness 
653 |a Hypercubes 
653 |a Sampling 
653 |a Multiple objective analysis 
653 |a Food quality 
653 |a Prediction models 
653 |a Qualitative analysis 
653 |a Storage conditions 
653 |a Neural networks 
653 |a Radial basis function 
653 |a Nutritive value 
653 |a Storage 
653 |a Experiments 
653 |a Optimization algorithms 
653 |a Harvest 
653 |a Latin hypercube sampling 
653 |a Lycium 
653 |a Lycium barbarum 
700 1 |a Huang, Xiaopeng 
700 1 |a Ma, Guojun 
700 1 |a Luo Qi 
700 1 |a Yang, Xiaoping 
700 1 |a Shanglong, Xin 
700 1 |a Wan Fangxin 
773 0 |t Foods  |g vol. 14, no. 16 (2025), p. 2807-2831 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244035681/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244035681/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244035681/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch