Assessment of industrial fault diagnosis using rough approximations of fuzzy hypersoft sets

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 9 (Sep 2025), p. e0329185
Autor principal: Abdullah, Muhammad
Otros Autores: Khuram Ali Khan, Atiqe Ur Rahman, Mabela, Rostin Matendo
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Reliable and timely fault diagnosis is critical for the safe and efficient operation of industrial systems. However, conventional diagnostic methods often struggle to handle uncertainties, vague data, and interdependent multi-criteria parameters, which can lead to incomplete or inaccurate results. Existing techniques are limited in their ability to manage hierarchical decision structures and overlapping information under real-world conditions. To address these limitations, this paper proposes a novel diagnostic framework based on Hypersoft Fuzzy Rough Set (HSFRS) theory.This hybrid approach integrates the flexibility of hypersoft sets for modeling multi-parameter relationships, the strength of fuzzy logic in handling vagueness, and the approximation capabilities of rough set theory to manage data uncertainty. Using a pseudo fuzzy binary relation, we define lower and upper approximation operators for fuzzy subsets within the parameter space. An enhanced Bingzhen and Weimin model-based decision-making algorithm is developed to support intelligent diagnosis. A case study involving a conveyor belt system is presented, evaluating eight fault states using five primary parameters and twenty sub-parameters. The results confirm the robustness, interpretability, and effectiveness of the proposed model in complex industrial scenarios by ranking the states based on fuzzy hypersoft closeness degrees.
ISSN:1932-6203
DOI:10.1371/journal.pone.0329185
Fuente:Health & Medical Collection