Assessment of industrial fault diagnosis using rough approximations of fuzzy hypersoft sets

Spremljeno u:
Bibliografski detalji
Izdano u:PLoS One vol. 20, no. 9 (Sep 2025), p. e0329185
Glavni autor: Abdullah, Muhammad
Daljnji autori: Khuram Ali Khan, Atiqe Ur Rahman, Mabela, Rostin Matendo
Izdano:
Public Library of Science
Teme:
Online pristup:Citation/Abstract
Full Text
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3249219150
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0329185  |2 doi 
035 |a 3249219150 
045 2 |b d20250901  |b d20250930 
084 |a 174835  |2 nlm 
100 1 |a Abdullah, Muhammad 
245 1 |a Assessment of industrial fault diagnosis using rough approximations of fuzzy hypersoft sets 
260 |b Public Library of Science  |c Sep 2025 
513 |a Journal Article 
520 3 |a Reliable and timely fault diagnosis is critical for the safe and efficient operation of industrial systems. However, conventional diagnostic methods often struggle to handle uncertainties, vague data, and interdependent multi-criteria parameters, which can lead to incomplete or inaccurate results. Existing techniques are limited in their ability to manage hierarchical decision structures and overlapping information under real-world conditions. To address these limitations, this paper proposes a novel diagnostic framework based on Hypersoft Fuzzy Rough Set (HSFRS) theory.This hybrid approach integrates the flexibility of hypersoft sets for modeling multi-parameter relationships, the strength of fuzzy logic in handling vagueness, and the approximation capabilities of rough set theory to manage data uncertainty. Using a pseudo fuzzy binary relation, we define lower and upper approximation operators for fuzzy subsets within the parameter space. An enhanced Bingzhen and Weimin model-based decision-making algorithm is developed to support intelligent diagnosis. A case study involving a conveyor belt system is presented, evaluating eight fault states using five primary parameters and twenty sub-parameters. The results confirm the robustness, interpretability, and effectiveness of the proposed model in complex industrial scenarios by ranking the states based on fuzzy hypersoft closeness degrees. 
653 |a Fault diagnosis 
653 |a Fuzzy sets 
653 |a Artificial intelligence 
653 |a Multiple criterion 
653 |a Fuzzy logic 
653 |a Signal processing 
653 |a Decision making 
653 |a Approximation 
653 |a Similarity measures 
653 |a Set theory 
653 |a Automation 
653 |a Belt conveyors 
653 |a Uncertainty 
653 |a Parameters 
653 |a Economic 
700 1 |a Khuram Ali Khan 
700 1 |a Atiqe Ur Rahman 
700 1 |a Mabela, Rostin Matendo 
773 0 |t PLoS One  |g vol. 20, no. 9 (Sep 2025), p. e0329185 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249219150/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3249219150/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249219150/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch