Lie Symmetries, Solitary Waves, and Noether Conservation Laws for (2 + 1)-Dimensional Anisotropic Power-Law Nonlinear Wave Systems

Guardado en:
書目詳細資料
發表在:Symmetry vol. 17, no. 9 (2025), p. 1445-1483
主要作者: Samina, Samina
其他作者: Almusawa Hassan, Arif Faiza, Jhangeer Adil
出版:
MDPI AG
主題:
在線閱讀:Citation/Abstract
Full Text + Graphics
Full Text - PDF
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
Resumen:This study presents the complete analysis of a (2 + 1)-dimensional nonlinear wave-type partial differential equation with anisotropic power-law nonlinearities and a general power-law source term, which arises in physical domains such as fluid dynamics, nonlinear acoustics, and wave propagation in elastic media, yet their symmetry properties and exact solution structures remain largely unexplored for arbitrary nonlinearity exponents. To fill this gap, a complete Lie symmetry classification of the equation is performed for arbitrary values of m and n, providing all admissible symmetry generators. These generators are then employed to systematically reduce the PDE to ordinary differential equations, enabling the construction of exact analytical solutions. Traveling wave and soliton solutions are derived using Jacobi elliptic function and sine-cosine methods, revealing rich nonlinear dynamics and wave patterns under anisotropic conditions. Additionally, conservation laws associated with variational symmetries are obtained via Noether’s theorem, yielding invariant physical quantities such as energy-like integrals. The results extend the existing literature by providing, for the first time, a full symmetry classification for arbitrary m and n, new families of soliton and traveling wave solutions in multidimensional settings, and associated conserved quantities. The findings contribute both computationally and theoretically to the study of nonlinear wave phenomena in multidimensional cases, extending the catalog of exact solutions and conserved dynamics of a broad class of nonlinear partial differential equations.
ISSN:2073-8994
DOI:10.3390/sym17091445
Fuente:Engineering Database