Using Model Predictive Control for Collision Avoidance During Lane Change Maneuvers in Autonomous Vehicles

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Software Science and Computational Intelligence vol. 17, no. 1 (2025), p. 1-22
Autor principal: Sarma, Kandarpa Kumar
Otros Autores: Deka, Surajit, Misra, Aradhana, Tukaria, Ridip, Dutta, Ananya
Publicado:
IGI Global
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3262245607
003 UK-CbPIL
022 |a 1942-9045 
022 |a 1942-9037 
024 7 |a 10.4018/IJSSCI.391244  |2 doi 
035 |a 3262245607 
045 2 |b d20250101  |b d20251231 
100 1 |a Sarma, Kandarpa Kumar  |u Gauhati University, India 
245 1 |a Using Model Predictive Control for Collision Avoidance During Lane Change Maneuvers in Autonomous Vehicles 
260 |b IGI Global  |c 2025 
513 |a Journal Article 
520 3 |a This paper proposes a novel approach for collision avoidance during lane changes using Model Predictive Control (MPC). The proposed method integrates real-time trajectory planning with dynamic vehicle modeling to predict and optimize the vehicle's motion over a finite time horizon. The paper presents the fundamental principles of MPC, its integration with vehicle dynamics, and its application to real-time control. Simulation results demonstrate the effectiveness of MPC in optimizing trajectory planning and ensuring safety under various traffic scenarios. This paper provides a comprehensive comparison of MPC with other control models such as Proportional-Integral-Derivative (PID) control, Rule-Based Control (RBC), and Reinforcement Learning (RL)-based approaches. Simulation results demonstrate the effectiveness of the proposed method in a variety of traffic scenarios, including high-density and mixed-traffic environments. Experimental results highlight the relative performance of these models under simulated environments in MATLAB. 
653 |a Simulation 
653 |a Software 
653 |a Proportional integral derivative 
653 |a Control algorithms 
653 |a Trajectory optimization 
653 |a Lane changing 
653 |a Traffic 
653 |a Optimization 
653 |a Decision making 
653 |a Autonomous vehicles 
653 |a Process controls 
653 |a Effectiveness 
653 |a Game theory 
653 |a Predictive control 
653 |a Collision avoidance 
653 |a Real time 
653 |a Trajectory planning 
653 |a Business metrics 
700 1 |a Deka, Surajit  |u Gauhati University, India 
700 1 |a Misra, Aradhana  |u Gauhati University, India 
700 1 |a Tukaria, Ridip  |u Gauhati University, India 
700 1 |a Dutta, Ananya  |u Gauhati University, India 
773 0 |t International Journal of Software Science and Computational Intelligence  |g vol. 17, no. 1 (2025), p. 1-22 
786 0 |d ProQuest  |t Computer Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3262245607/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3262245607/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch