The Role of Automated Diagnostics in the Identification of Learning Disabilities: Bayesian Probability Models in the Diagnostic Assessment

Na minha lista:
Detalhes bibliográficos
Publicado no:Education Sciences vol. 15, no. 10 (2025), p. 1385-1402
Autor principal: Gergő, Vida
Outros Autores: Sántha Kálmán, Trembulyák Márta, Pongrácz Petra, Balogh, Regina
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3265872565
003 UK-CbPIL
022 |a 2227-7102 
022 |a 2076-3344 
024 7 |a 10.3390/educsci15101385  |2 doi 
035 |a 3265872565 
045 2 |b d20250101  |b d20251231 
084 |a 231457  |2 nlm 
100 1 |a Gergő, Vida  |u Department of Special Education, Apáczai Csere János Faculty of Education, Humanities and Social Sciences, Széchenyi István University, 9026 Gyor, Hungary; pongracz.petra@sze.hu (P.P.); balogh.regina@sze.hu (R.B.) 
245 1 |a The Role of Automated Diagnostics in the Identification of Learning Disabilities: Bayesian Probability Models in the Diagnostic Assessment 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study investigates the application of Bayesian probability models in the diagnostic assessment of learning disabilities. The objective of this study was to determine whether specific conditions identified in expert reports could predict subsequent diagnoses. The sample consisted of 201 expert reports on children diagnosed with learning disabilities, which were analysed using qualitative content analysis, fuzzy set qualitative comparative analysis (fsQCA), and Bayesian conditional probability models. Variables such as vocabulary, working memory index, processing speed, and visuomotor coordination were examined as potential predictors. The analysis demonstrated that Bayesian networks captured conditional links, such as the strong association between working memory and perceptual inference, as well as an unexpected negative link between vocabulary and verbal comprehension. The study concludes that Bayesian networks provide a transparent and data-driven framework for pre-screening and risk assessment in special education settings. The limitations of this study include the absence of a control group and exclusive reliance on SNI cases. Future research should explore the integration of abductive reasoning into automated diagnostic software to enhance inclusivity and support decision-making. 
653 |a Pedagogy 
653 |a Fuzzy sets 
653 |a Learning disabilities 
653 |a Disability 
653 |a Logic 
653 |a Decision making 
653 |a Variables 
653 |a Special education 
653 |a Probability 
653 |a Comparative analysis 
653 |a Bayesian analysis 
653 |a Content analysis 
653 |a Risk assessment 
653 |a Qualitative research 
653 |a Indexes 
653 |a Learning Problems 
653 |a Inferences 
653 |a Diagnostic Tests 
653 |a Bayesian Statistics 
653 |a Measurement Techniques 
653 |a Language Impairments 
653 |a Outcome Measures 
653 |a Correlation 
653 |a Diagnostic Teaching 
653 |a Computer Oriented Programs 
653 |a Beliefs 
653 |a Data Analysis 
653 |a Cognitive Tests 
653 |a Creativity 
653 |a Comparative Education 
653 |a Networks 
653 |a Disability Identification 
653 |a Mental Disorders 
653 |a Educational Diagnosis 
653 |a Educational Needs 
700 1 |a Sántha Kálmán  |u Institute of Education, University of Pannonia, 8200 Veszprem, Hungary; santha.kalman@htk.uni-pannon.hu 
700 1 |a Trembulyák Márta  |u Department of Special Education, Apáczai Csere János Faculty of Education, Humanities and Social Sciences, Széchenyi István University, 9026 Gyor, Hungary; pongracz.petra@sze.hu (P.P.); balogh.regina@sze.hu (R.B.) 
700 1 |a Pongrácz Petra  |u Department of Special Education, Apáczai Csere János Faculty of Education, Humanities and Social Sciences, Széchenyi István University, 9026 Gyor, Hungary; pongracz.petra@sze.hu (P.P.); balogh.regina@sze.hu (R.B.) 
700 1 |a Balogh, Regina  |u Department of Special Education, Apáczai Csere János Faculty of Education, Humanities and Social Sciences, Széchenyi István University, 9026 Gyor, Hungary; pongracz.petra@sze.hu (P.P.); balogh.regina@sze.hu (R.B.) 
773 0 |t Education Sciences  |g vol. 15, no. 10 (2025), p. 1385-1402 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265872565/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265872565/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265872565/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch