Dynamic Line Rating and Transformer-Life-Loss-Related Unit Commitment Under Extreme High-Temperature Conditions

Guardat en:
Dades bibliogràfiques
Publicat a:Electronics vol. 14, no. 20 (2025), p. 4027-4045
Autor principal: Zhou, Hong
Altres autors: Lu, Liang, Yang, Ke, Shen, Li, Wen Yiyu, Wang, Qing
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3265896503
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14204027  |2 doi 
035 |a 3265896503 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Zhou, Hong 
245 1 |a Dynamic Line Rating and Transformer-Life-Loss-Related Unit Commitment Under Extreme High-Temperature Conditions 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The increasing frequency of extreme high-temperature events has led to deteriorating thermal stability in power transmission lines and accelerated life of transformers. Conventional unit commitment (UC) employs static line rating (SLR) and neglects transformer lifetime degradation, posing hidden risks to system security in high-temperature and heavy-load scenarios. To address this challenge, this paper proposes a dispatch method that incorporates dynamic line rating (DLR) and transformer life loss under extreme high-temperature conditions. First, the conductor temperature-rise mechanism is formulated using the thermal balance theory, upon which a temperature-dependent DLR calculation model is developed. Second, the coupling relationship between transformer hot-spot temperature, load ratio, and ambient temperature is quantified, and an ambient temperature-driven transformer life cost function is formulated using linear damage accumulation theory. Finally, a unit commitment (UC) optimization model is established to minimize unit generation costs, transformer lifetime loss costs, and wind curtailment penalties costs, while satisfying power balance, transmission capacity, and other operational constraints. Simulation results on the IEEE 39-bus system demonstrate that, compared to conventional models, the proposed method improves transmission capacity utilization in high-temperature conditions by 12%, reduces transformer life loss costs by 69%, and lowers total operating costs by 4.9%. 
653 |a Heat transfer 
653 |a Failure 
653 |a Electrical loads 
653 |a Cooling 
653 |a Thermal stability 
653 |a Temperature dependence 
653 |a Temperature effects 
653 |a Cost function 
653 |a Electric power transmission 
653 |a Aging 
653 |a Optimization 
653 |a Ambient temperature 
653 |a Weather 
653 |a Power lines 
653 |a Power supply 
653 |a Damage accumulation 
653 |a Unit commitment 
653 |a Operating costs 
653 |a High temperature 
653 |a Transformers 
653 |a Radiation 
653 |a Optimization models 
700 1 |a Lu, Liang 
700 1 |a Yang, Ke 
700 1 |a Shen, Li 
700 1 |a Wen Yiyu 
700 1 |a Wang, Qing 
773 0 |t Electronics  |g vol. 14, no. 20 (2025), p. 4027-4045 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265896503/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265896503/fulltextwithgraphics/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265896503/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch