Sustainable Aquaculture Through Enzymatic Hydrolysis of Raw Chitin from Crab By-Products: Functional Fish Feeds Targeting Fish Health with Implications for Human Health
Guardado en:
| Publicado en: | Fishes vol. 10, no. 10 (2025), p. 514-536 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Valorisation of crab by-products by enzymatic hydrolysis (EH) is proving to be a promising strategy to promote sustainable aquaculture and support a circular economy for crustaceans. Crab processing generates significant amounts of by-products that, if not properly managed, pose an environmental and economic challenge. These by-products are rich in chitin, proteins, and bioactive compounds and offer significant untapped potential for the development of functional feed. This review focuses on the application of enzymatically hydrolysed crab by-products as functional feed additives in aquaculture and their effects on fish growth, health management, and, consequently, human health. Recent studies have shown that EH effectively recovers chitin and bioactive peptides and improves the digestibility and bioavailability of nutrients in aquaculture. The inclusion of crude chitin, along with residual proteins and calcium carbonate, in the diet of farmed fish has been associated with increased growth, improved immune responses, and greater disease resistance, emphasising their critical role in fish health management. In addition, these functional additives contribute to the development of innovative aquafeeds with high added value and improved nutritional quality, while reducing environmental waste. Overall, the utilisation of crustacean by-products through enzymatic hydrolysis represents a valuable tool for the sustainable development of crustacean aquaculture, promotes the circular economy, and supports the development of innovative functional feeds while improving the growth and health of farmed fish, which has a positive impact on human health through their consumption. |
|---|---|
| ISSN: | 2410-3888 |
| DOI: | 10.3390/fishes10100514 |
| Fuente: | Biological Science Database |