Dual-Mode PID Control for Automotive Resolver Angle Compensation Based on a Fuzzy Self-Tuning Divide-and-Conquer Framework
Guardat en:
| Publicat a: | World Electric Vehicle Journal vol. 16, no. 10 (2025), p. 546-564 |
|---|---|
| Autor principal: | |
| Altres autors: | , , , , |
| Publicat: |
MDPI AG
|
| Matèries: | |
| Accés en línia: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetes: |
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
| Resum: | Electric vehicle (EV) drivetrains often suffer from degraded control precision due to resolver zero-position deviation. This issue becomes particularly critical under diverse automotive-grade operating conditions, posing challenges for achieving reliable and efficient drivetrain performance. To tackle this problem, we propose a dual-mode PID dynamic compensation control methodology. This approach establishes a divide-and-conquer framework that differentiates between weak-magnetic and non-weak-magnetic regions. It integrates current loop feedback with a fuzzy self-tuning mechanism, enabling real-time dynamic compensation of the resolver’s initial angle. To ensure system stability under extreme automotive conditions (−40 °C to 125 °C, ±0.5 g vibration, and electromagnetic interference), a triple-redundancy architecture is implemented. This architecture combines hardware filtering, software verification, and fault diagnosis. Our contribution lies in presenting a reliable solution for intelligent EV drivetrain calibration. The proposed method effectively mitigates resolver zero-position deviation, not only enhancing drivetrain performance under challenging automotive environments but also ensuring compliance with ISO 26262 ASIL-C safety standards. This research has been validated through its implementation in a 3.5-ton commercial logistics vehicle by a leading automotive manufacturer, demonstrating its practical viability and potential for widespread adoption in the EV industry. |
|---|---|
| ISSN: | 2032-6653 |
| DOI: | 10.3390/wevj16100546 |
| Font: | Engineering Database |