Dual-Mode PID Control for Automotive Resolver Angle Compensation Based on a Fuzzy Self-Tuning Divide-and-Conquer Framework

Guardado en:
Detalles Bibliográficos
Publicado en:World Electric Vehicle Journal vol. 16, no. 10 (2025), p. 546-564
Autor principal: Zeng Xin
Otros Autores: Wang Yongyuan, Zhu, Julian, Chu Yubo, Li, Hao, Peng Hao
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3265955347
003 UK-CbPIL
022 |a 2032-6653 
024 7 |a 10.3390/wevj16100546  |2 doi 
035 |a 3265955347 
045 2 |b d20250101  |b d20251231 
100 1 |a Zeng Xin  |u School of Automotive Engineering, Wuhan Vocational College of Software and Engineering, Wuhan Open University, Wuhan 430205, China; 42300041@whvcse.edu.cn 
245 1 |a Dual-Mode PID Control for Automotive Resolver Angle Compensation Based on a Fuzzy Self-Tuning Divide-and-Conquer Framework 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Electric vehicle (EV) drivetrains often suffer from degraded control precision due to resolver zero-position deviation. This issue becomes particularly critical under diverse automotive-grade operating conditions, posing challenges for achieving reliable and efficient drivetrain performance. To tackle this problem, we propose a dual-mode PID dynamic compensation control methodology. This approach establishes a divide-and-conquer framework that differentiates between weak-magnetic and non-weak-magnetic regions. It integrates current loop feedback with a fuzzy self-tuning mechanism, enabling real-time dynamic compensation of the resolver’s initial angle. To ensure system stability under extreme automotive conditions (−40 °C to 125 °C, ±0.5 g vibration, and electromagnetic interference), a triple-redundancy architecture is implemented. This architecture combines hardware filtering, software verification, and fault diagnosis. Our contribution lies in presenting a reliable solution for intelligent EV drivetrain calibration. The proposed method effectively mitigates resolver zero-position deviation, not only enhancing drivetrain performance under challenging automotive environments but also ensuring compliance with ISO 26262 ASIL-C safety standards. This research has been validated through its implementation in a 3.5-ton commercial logistics vehicle by a leading automotive manufacturer, demonstrating its practical viability and potential for widespread adoption in the EV industry. 
653 |a Accuracy 
653 |a Proportional integral derivative 
653 |a Self tuning 
653 |a Powertrain 
653 |a Resolvers 
653 |a Magnetic fields 
653 |a Electric vehicles 
653 |a Optimization 
653 |a Adaptation 
653 |a Fuzzy logic 
653 |a Compensation 
653 |a Embedded systems 
653 |a Physics 
653 |a Control algorithms 
653 |a Fault diagnosis 
653 |a Coordinate transformations 
653 |a Sensors 
653 |a Electromagnetic interference 
653 |a Controllers 
653 |a Deviation 
653 |a Program verification (computers) 
653 |a Compliance 
653 |a Real time 
653 |a Control methods 
653 |a Systems stability 
700 1 |a Wang Yongyuan  |u College of Automotive Engineering, Wuhan University of Technology, Wuhan 430081, China; 15527915516@163.com 
700 1 |a Zhu, Julian  |u School of Automotive Engineering, Wuhan Vocational College of Software and Engineering, Wuhan Open University, Wuhan 430205, China; 42300041@whvcse.edu.cn 
700 1 |a Chu Yubo  |u Technology Center, Wuhan Ligong Tongyu New Energy Power Co., Ltd., Wuhan 430070, China; chuyubo@wutep.com (Y.C.); lihao@wutep.com (H.L.); penghao@wutep.com (H.P.) 
700 1 |a Li, Hao  |u Technology Center, Wuhan Ligong Tongyu New Energy Power Co., Ltd., Wuhan 430070, China; chuyubo@wutep.com (Y.C.); lihao@wutep.com (H.L.); penghao@wutep.com (H.P.) 
700 1 |a Peng Hao  |u Technology Center, Wuhan Ligong Tongyu New Energy Power Co., Ltd., Wuhan 430070, China; chuyubo@wutep.com (Y.C.); lihao@wutep.com (H.L.); penghao@wutep.com (H.P.) 
773 0 |t World Electric Vehicle Journal  |g vol. 16, no. 10 (2025), p. 546-564 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3265955347/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3265955347/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3265955347/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch