Multiscale Modeling of Thermo–Electro–Mechanical Coupling of BGA Solder Joints in Microelectronic Systems of Ruggedized Computers for Signal Integrity Analysis

Guardado en:
Detalles Bibliográficos
Publicado en:Micromachines vol. 16, no. 11 (2025), p. 1292-1321
Autor principal: Pan, Li
Otros Autores: Huang, Jin, Zhang, Jie, Gong Hongxiao, Wang, Jianjun, Zuo Daijiang, Su Mengyang, Shi Jiwei
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3275543732
003 UK-CbPIL
022 |a 2072-666X 
024 7 |a 10.3390/mi16111292  |2 doi 
035 |a 3275543732 
045 2 |b d20250101  |b d20251231 
084 |a 231537  |2 nlm 
100 1 |a Pan, Li  |u State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipments, Xidian University, Xi’an 710071, China; 23041212614@stu.xidian.edu.cn (P.L.); hxgong@xidian.edu.cn (H.G.); wangjianjun@xidian.edu.cn (J.W.); 23041212718@stu.xidian.edu.cn (D.Z.); 23041212582@stu.xidian.edu.cn (M.S.) 
245 1 |a Multiscale Modeling of Thermo–Electro–Mechanical Coupling of BGA Solder Joints in Microelectronic Systems of Ruggedized Computers for Signal Integrity Analysis 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Ruggedized computers are the core of modern communication, guidance, control, and data-processing systems, and typically operate under extreme environmental conditions. However, under extreme service conditions such as temperature cycling, vibration, and mechanical shock, thermo–electro–mechanical (TME) multi-physics coupling in ball grid array (BGA) solder joints is particularly significant, severely affecting system reliability and signal integrity. To comprehensively elucidate the effects of thermal, electrical, and mechanical fields on solder joints and signal transmission, this study proposes a multiscale multi-physics modeling and analysis framework for BGA solder joints in microelectronic systems of ruggedized computers, covering the computer system level, motherboard level, solder joint level, and solder interconnect level. A model correlation study under ten thermal cycling conditions demonstrated an accuracy of 88.89%, confirming the validity and applicability of the proposed model. Based on this validated framework and model, the temperature distribution, stress–strain response, and signal integrity characteristics were further analyzed under combined conditions of thermal cycling, random vibration, and mechanical shock. The results indicate that a rise in temperature in solder joints induces thermal stresses and deformations, while variations in electrical conductivity under thermal loading trigger electromigration and concentration evolution, which further couple with stress gradients to form TME multi-physics interactions. Under such coupling, critical solder balls exhibit stress concentration at the metallurgical interfaces, with a maximum von Mises stress of 191.51 MPa accompanied by plastic strain accumulation. In addition, the PCIe high-speed interconnect experienced a maximum deformation of 16.104 μm and a voltage amplitude reduction of approximately 18.51% after 928 thermal cycles, exceeding the normal operating range. This research provides a theoretical basis and engineering reference for reliability assessment and optimization design of microelectronic systems in ruggedized computers in complex service environments. 
653 |a Reliability analysis 
653 |a Temperature distribution 
653 |a Mechanical shock 
653 |a Plastic deformation 
653 |a Accuracy 
653 |a Thermal cycling 
653 |a Data processing 
653 |a System reliability 
653 |a Investigations 
653 |a Stress concentration 
653 |a Mathematical models 
653 |a Modelling 
653 |a Crack initiation 
653 |a Electrical resistivity 
653 |a Random vibration 
653 |a Joining 
653 |a Coupling 
653 |a Ball grid packaging 
653 |a Signal transmission 
653 |a Computers 
653 |a Physics 
653 |a Solders 
653 |a Signal integrity 
653 |a Electric fields 
653 |a Concentration gradient 
653 |a Thermal stress 
653 |a Motherboards 
653 |a Finite element analysis 
653 |a Electromigration 
653 |a Lead 
653 |a Design optimization 
653 |a Microelectronics 
653 |a Strain 
653 |a Soldered joints 
653 |a Shear strength 
700 1 |a Huang, Jin  |u State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipments, Xidian University, Xi’an 710071, China; 23041212614@stu.xidian.edu.cn (P.L.); hxgong@xidian.edu.cn (H.G.); wangjianjun@xidian.edu.cn (J.W.); 23041212718@stu.xidian.edu.cn (D.Z.); 23041212582@stu.xidian.edu.cn (M.S.) 
700 1 |a Zhang, Jie  |u State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipments, Xidian University, Xi’an 710071, China; 23041212614@stu.xidian.edu.cn (P.L.); hxgong@xidian.edu.cn (H.G.); wangjianjun@xidian.edu.cn (J.W.); 23041212718@stu.xidian.edu.cn (D.Z.); 23041212582@stu.xidian.edu.cn (M.S.) 
700 1 |a Gong Hongxiao  |u State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipments, Xidian University, Xi’an 710071, China; 23041212614@stu.xidian.edu.cn (P.L.); hxgong@xidian.edu.cn (H.G.); wangjianjun@xidian.edu.cn (J.W.); 23041212718@stu.xidian.edu.cn (D.Z.); 23041212582@stu.xidian.edu.cn (M.S.) 
700 1 |a Wang, Jianjun  |u State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipments, Xidian University, Xi’an 710071, China; 23041212614@stu.xidian.edu.cn (P.L.); hxgong@xidian.edu.cn (H.G.); wangjianjun@xidian.edu.cn (J.W.); 23041212718@stu.xidian.edu.cn (D.Z.); 23041212582@stu.xidian.edu.cn (M.S.) 
700 1 |a Zuo Daijiang  |u State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipments, Xidian University, Xi’an 710071, China; 23041212614@stu.xidian.edu.cn (P.L.); hxgong@xidian.edu.cn (H.G.); wangjianjun@xidian.edu.cn (J.W.); 23041212718@stu.xidian.edu.cn (D.Z.); 23041212582@stu.xidian.edu.cn (M.S.) 
700 1 |a Su Mengyang  |u State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipments, Xidian University, Xi’an 710071, China; 23041212614@stu.xidian.edu.cn (P.L.); hxgong@xidian.edu.cn (H.G.); wangjianjun@xidian.edu.cn (J.W.); 23041212718@stu.xidian.edu.cn (D.Z.); 23041212582@stu.xidian.edu.cn (M.S.) 
700 1 |a Shi Jiwei  |u Zhongxing Telecommunication Equipment Corporation, Xi’an 710076, China; jiweishi2021@163.com 
773 0 |t Micromachines  |g vol. 16, no. 11 (2025), p. 1292-1321 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3275543732/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3275543732/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3275543732/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch