Multiscale Modeling of Thermo–Electro–Mechanical Coupling of BGA Solder Joints in Microelectronic Systems of Ruggedized Computers for Signal Integrity Analysis
Guardado en:
| Publicado en: | Micromachines vol. 16, no. 11 (2025), p. 1292-1321 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Ruggedized computers are the core of modern communication, guidance, control, and data-processing systems, and typically operate under extreme environmental conditions. However, under extreme service conditions such as temperature cycling, vibration, and mechanical shock, thermo–electro–mechanical (TME) multi-physics coupling in ball grid array (BGA) solder joints is particularly significant, severely affecting system reliability and signal integrity. To comprehensively elucidate the effects of thermal, electrical, and mechanical fields on solder joints and signal transmission, this study proposes a multiscale multi-physics modeling and analysis framework for BGA solder joints in microelectronic systems of ruggedized computers, covering the computer system level, motherboard level, solder joint level, and solder interconnect level. A model correlation study under ten thermal cycling conditions demonstrated an accuracy of 88.89%, confirming the validity and applicability of the proposed model. Based on this validated framework and model, the temperature distribution, stress–strain response, and signal integrity characteristics were further analyzed under combined conditions of thermal cycling, random vibration, and mechanical shock. The results indicate that a rise in temperature in solder joints induces thermal stresses and deformations, while variations in electrical conductivity under thermal loading trigger electromigration and concentration evolution, which further couple with stress gradients to form TME multi-physics interactions. Under such coupling, critical solder balls exhibit stress concentration at the metallurgical interfaces, with a maximum von Mises stress of 191.51 MPa accompanied by plastic strain accumulation. In addition, the PCIe high-speed interconnect experienced a maximum deformation of 16.104 μm and a voltage amplitude reduction of approximately 18.51% after 928 thermal cycles, exceeding the normal operating range. This research provides a theoretical basis and engineering reference for reliability assessment and optimization design of microelectronic systems in ruggedized computers in complex service environments. |
|---|---|
| ISSN: | 2072-666X |
| DOI: | 10.3390/mi16111292 |
| Fuente: | Engineering Database |