Molecularly tailored SAMs for Ru interconnects: high-temperature stability, suppressed metal diffusion, and enhanced adhesion

Збережено в:
Бібліографічні деталі
Опубліковано в::NPG Asia Materials vol. 17, no. 1 (2025), p. 45-63
Автор: Wu, Hong-Yi
Інші автори: Fang, Yi-Ying, Chen, Yu-Lin, Lu, Jung-Fu, Lu, Ming-Yen, Chang, Shou-Yi, Keng, Pei Yuin
Опубліковано:
Nature Publishing Group
Предмети:
Онлайн доступ:Citation/Abstract
Full Text
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3279511245
003 UK-CbPIL
022 |a 1884-4049 
022 |a 1884-4057 
024 7 |a 10.1038/s41427-025-00627-2  |2 doi 
035 |a 3279511245 
045 2 |b d20250101  |b d20251231 
084 |a 145842  |2 nlm 
100 1 |a Wu, Hong-Yi  |u Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (ROR: https://ror.org/00zdnkx70) (GRID: grid.38348.34) (ISNI: 0000 0004 0532 0580) 
245 1 |a Molecularly tailored SAMs for Ru interconnects: high-temperature stability, suppressed metal diffusion, and enhanced adhesion 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a The miniaturization of integrated circuits (ICs) necessitates alternative diffusion barriers with reduced electrical resistance to mitigate the RC delay effect. Self-assembled monolayers (SAMs), with their molecular-scale thickness (1–2 nm), offer a promising solution for controlling Ru interdiffusion while preserving low resistivity. This study investigates the effectiveness of 2-hydroxybenzylimine-triethoxysilane (2-HBITES), benzyliminetriethoxysilane (BITES), and n-octyltriethoxysilane (OTS) as SAM-based diffusion barriers for Ru metallization. SAM functionalization was confirmed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), while barrier performance was evaluated through sheet resistance measurements, X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM) following rapid thermal annealing (RTA). The results demonstrate that SAM-modified substrates effectively suppress Ru silicide formation, with 2-HBITES exhibiting the highest thermal stability, delaying Ru interdiffusion until 800 °C, compared to 775 °C for BITES, 725 °C for OTS, and 600 °C for non-functionalized Ru/Ox/Si. The superior performance of 2-HBITES is attributed to its salicylaldimine terminal group, which enhances Ru adhesion and diffusion suppression. Additionally, this study provides direct XPS evidence of SAM retention within a Ru/SAM/Ox/Si structure post-annealing at 700 °C, highlighting the potential of SAMs as thermally stable, ultrathin diffusion barriers for advanced interconnect technologies.As microchips become smaller and faster, the materials used to connect electronic components face increasing performance and reliability challenges. This study introduces a molecular engineering strategy that uses self-assembled monolayers (SAMs)—extremely thin molecular films—to improve the stability and performance of metal wiring in advanced electronics. By tailoring the molecular structure of the SAM, the team developed a new interface material that enhances adhesion, reduces electrical resistance, and withstands high temperatures. Specifically, the engineered monolayer coating demonstrated strong bonding with ruthenium (a metal used in chip wiring), effectively blocking unwanted diffusion and preserving material integrity even at 700 °C. This work offers a new pathway for creating ultra-thin, high-performance materials critical for next-generation semiconductor devices.This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.This study demonstrates the use of molecularly tailored self-assembled monolayers (SAMs) as ultrathin diffusion barriers and adhesion liners for Ru interconnects. Compared to non-functionalized and methyl-terminated surfaces, hydroxylated arylimine SAMs such as 2-HBITES effectively suppress Ru interdiffusion, prevent film delamination, and significantly enhance thermal stability up to 700 °C. The SAM-functionalized interfaces exhibit improved adhesion and structural integrity, offering a promising strategy for future scaled interconnect technologies. 
651 4 |a United States--US 
651 4 |a Germany 
653 |a Interconnections 
653 |a Electrons 
653 |a Performance evaluation 
653 |a Thermal stability 
653 |a Molecular structure 
653 |a Electrical resistance 
653 |a Diffusion barriers 
653 |a Transmission electron microscopy 
653 |a Copper 
653 |a Metallizing 
653 |a Thin films 
653 |a Semiconductor devices 
653 |a Silicides 
653 |a Ethanol 
653 |a Silicon 
653 |a Scanning transmission electron microscopy 
653 |a Linings 
653 |a Integrated circuits 
653 |a Substrates 
653 |a Interdiffusion 
653 |a Self-assembly 
653 |a Electronic components 
653 |a Adhesion 
653 |a Silicon wafers 
653 |a Annealing 
653 |a Diffusion rate 
653 |a Wiring 
653 |a Artificial intelligence 
653 |a Monolayers 
700 1 |a Fang, Yi-Ying  |u Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (ROR: https://ror.org/00zdnkx70) (GRID: grid.38348.34) (ISNI: 0000 0004 0532 0580) 
700 1 |a Chen, Yu-Lin  |u Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (ROR: https://ror.org/00zdnkx70) (GRID: grid.38348.34) (ISNI: 0000 0004 0532 0580) 
700 1 |a Lu, Jung-Fu  |u Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (ROR: https://ror.org/00zdnkx70) (GRID: grid.38348.34) (ISNI: 0000 0004 0532 0580) 
700 1 |a Lu, Ming-Yen  |u Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (ROR: https://ror.org/00zdnkx70) (GRID: grid.38348.34) (ISNI: 0000 0004 0532 0580) 
700 1 |a Chang, Shou-Yi  |u Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (ROR: https://ror.org/00zdnkx70) (GRID: grid.38348.34) (ISNI: 0000 0004 0532 0580) 
700 1 |a Keng, Pei Yuin  |u Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (ROR: https://ror.org/00zdnkx70) (GRID: grid.38348.34) (ISNI: 0000 0004 0532 0580) 
773 0 |t NPG Asia Materials  |g vol. 17, no. 1 (2025), p. 45-63 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3279511245/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3279511245/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3279511245/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch