Hybrid Partial-Data-Driven H∞ Robust Tracking Control for Linear Stochastic Systems with Discrete-Time Observation of Reference Trajectory
Guardado en:
| Udgivet i: | Mathematics vol. 13, no. 23 (2025), p. 3854-3876 |
|---|---|
| Hovedforfatter: | |
| Andre forfattere: | , |
| Udgivet: |
MDPI AG
|
| Fag: | |
| Online adgang: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Tags: |
Ingen Tags, Vær først til at tagge denne postø!
|
| Resumen: | A hybrid robust <inline-formula>H∞</inline-formula> tracking-control design method is studied for linear stochastic systems in which the parameters of the reference system are unknown but inferred from discrete-time observations. First, the reference system parameters are estimated by the least-squares method, and a corresponding data-dependent augmented system is constructed. Second, a Riccati matrix inequality is established for these systems, and a state-feedback <inline-formula>H∞</inline-formula> controller is designed to improve tracking performance. Third, to mitigate large tracking errors, an error-feedback control scheme is introduced to compensate for dynamic tracking deviations. These results yield a hybrid control framework that integrates data observation, state-feedback <inline-formula>H∞</inline-formula> control, and error-feedback <inline-formula>H∞</inline-formula> control to address the tracking problem more effectively. Two numerical examples and one practical example demonstrate the effectiveness of the proposed method. |
|---|---|
| ISSN: | 2227-7390 |
| DOI: | 10.3390/math13233854 |
| Fuente: | Engineering Database |