Hybrid Partial-Data-Driven H∞ Robust Tracking Control for Linear Stochastic Systems with Discrete-Time Observation of Reference Trajectory

Enregistré dans:
Détails bibliographiques
Publié dans:Mathematics vol. 13, no. 23 (2025), p. 3854-3876
Auteur principal: Zhang Yiteng
Autres auteurs: Lin, Xiangyun, Zhang, Rui
Publié:
MDPI AG
Sujets:
Accès en ligne:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:A hybrid robust <inline-formula>H∞</inline-formula> tracking-control design method is studied for linear stochastic systems in which the parameters of the reference system are unknown but inferred from discrete-time observations. First, the reference system parameters are estimated by the least-squares method, and a corresponding data-dependent augmented system is constructed. Second, a Riccati matrix inequality is established for these systems, and a state-feedback <inline-formula>H∞</inline-formula> controller is designed to improve tracking performance. Third, to mitigate large tracking errors, an error-feedback control scheme is introduced to compensate for dynamic tracking deviations. These results yield a hybrid control framework that integrates data observation, state-feedback <inline-formula>H∞</inline-formula> control, and error-feedback <inline-formula>H∞</inline-formula> control to address the tracking problem more effectively. Two numerical examples and one practical example demonstrate the effectiveness of the proposed method.
ISSN:2227-7390
DOI:10.3390/math13233854
Source:Engineering Database