ESCAPE: an efficient and safe distributed UAV swarm exploration framework with collision avoidance perception

Uloženo v:
Podrobná bibliografie
Vydáno v:Autonomous Intelligent Systems vol. 5, no. 1 (Dec 2025), p. 30
Hlavní autor: Bao, Yaoyang
Další autoři: Du, Siyuan, Jiang, Qingwei, Li, Yixuan, Zhao, Bochao, Wang, Gang, Liu, Qingwen, Xiong, Mingliang
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3285903942
003 UK-CbPIL
022 |a 2730-616X 
024 7 |a 10.1007/s43684-025-00123-y  |2 doi 
035 |a 3285903942 
045 2 |b d20251201  |b d20251231 
100 1 |a Bao, Yaoyang  |u Tongji University, School of Computer Science and Technology, Shanghai, China (GRID:grid.24516.34) (ISNI:0000 0001 2370 4535) 
245 1 |a ESCAPE: an efficient and safe distributed UAV swarm exploration framework with collision avoidance perception 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Significant progress has been made in distributed unmanned aerial vehicle (UAV) swarm exploration. In complex scenarios, existing methods typically rely on shared trajectory information for collision avoidance, but communication timeliness issues may result in outdated trajectories being referenced when making collision avoidance decisions, preventing timely responses to the motion changes of other UAVs, thus elevating the collision risk. To address this issue, this paper proposes a new distributed UAV swarm exploration framework. First, we introduce an improved global exploration strategy that combines the exploration task requirements with the surrounding obstacle distribution to plan an efficient and safe coverage path. Secondly, we design a collision risk prediction method based on relative distance and relative velocity, which effectively assists UAVs in making timely collision avoidance decisions. Lastly, we propose a multi-objective local trajectory optimization function that considers the positions of UAVs and static obstacles, thereby planning safe flight trajectories. Extensive simulations and real-world experiments demonstrate that this framework enables safe and efficient exploration in complex environments. 
653 |a Velocity 
653 |a Collaboration 
653 |a Trajectory optimization 
653 |a Cooperation 
653 |a Communication 
653 |a Unmanned aerial vehicles 
653 |a Optimization 
653 |a Sensors 
653 |a Decision making 
653 |a Robots 
653 |a Collisions 
653 |a Collision avoidance 
653 |a Methods 
653 |a Multiple objective analysis 
653 |a Traveling salesman problem 
653 |a Trajectory planning 
653 |a Barriers 
653 |a Decisions 
653 |a Efficiency 
700 1 |a Du, Siyuan  |u Tongji University, School of Computer Science and Technology, Shanghai, China (GRID:grid.24516.34) (ISNI:0000 0001 2370 4535) 
700 1 |a Jiang, Qingwei  |u Tongji University, School of Computer Science and Technology, Shanghai, China (GRID:grid.24516.34) (ISNI:0000 0001 2370 4535) 
700 1 |a Li, Yixuan  |u Tongji University, School of Computer Science and Technology, Shanghai, China (GRID:grid.24516.34) (ISNI:0000 0001 2370 4535) 
700 1 |a Zhao, Bochao  |u Tianjin University, State Key Laboratory of Smart Power Distribution Equipment and System, School of Electrical and Information Engineering, Tianjin, China (GRID:grid.33763.32) (ISNI:0000 0004 1761 2484) 
700 1 |a Wang, Gang  |u Beijing Institute of Technology, State Key Laboratory of Autonomous Intelligent Unmanned Systems, School of Automation, Beijing, China (GRID:grid.43555.32) (ISNI:0000 0000 8841 6246) 
700 1 |a Liu, Qingwen  |u Tongji University, School of Computer Science and Technology, Shanghai, China (GRID:grid.24516.34) (ISNI:0000 0001 2370 4535) 
700 1 |a Xiong, Mingliang  |u Tongji University, School of Computer Science and Technology, Shanghai, China (GRID:grid.24516.34) (ISNI:0000 0001 2370 4535) 
773 0 |t Autonomous Intelligent Systems  |g vol. 5, no. 1 (Dec 2025), p. 30 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3285903942/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3285903942/fulltext/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3285903942/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch