Iterative Distributed Multinomial Regression
Gorde:
| Argitaratua izan da: | arXiv.org (Dec 2, 2024), p. n/a |
|---|---|
| Egile nagusia: | |
| Beste egile batzuk: | , |
| Argitaratua: |
Cornell University Library, arXiv.org
|
| Gaiak: | |
| Sarrera elektronikoa: | Citation/Abstract Full text outside of ProQuest |
| Etiketak: |
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
| Laburpena: | This article introduces an iterative distributed computing estimator for the multinomial logistic regression model with large choice sets. Compared to the maximum likelihood estimator, the proposed iterative distributed estimator achieves significantly faster computation and, when initialized with a consistent estimator, attains asymptotic efficiency under a weak dominance condition. Additionally, we propose a parametric bootstrap inference procedure based on the iterative distributed estimator and establish its consistency. Extensive simulation studies validate the effectiveness of the proposed methods and highlight the computational efficiency of the iterative distributed estimator. |
|---|---|
| ISSN: | 2331-8422 |
| Baliabidea: | Engineering Database |