Iterative Distributed Multinomial Regression

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:arXiv.org (Dec 2, 2024), p. n/a
Egile nagusia: Fan, Yanqin
Beste egile batzuk: Okar, Yigit, Shi, Xuetao
Argitaratua:
Cornell University Library, arXiv.org
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full text outside of ProQuest
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Laburpena:This article introduces an iterative distributed computing estimator for the multinomial logistic regression model with large choice sets. Compared to the maximum likelihood estimator, the proposed iterative distributed estimator achieves significantly faster computation and, when initialized with a consistent estimator, attains asymptotic efficiency under a weak dominance condition. Additionally, we propose a parametric bootstrap inference procedure based on the iterative distributed estimator and establish its consistency. Extensive simulation studies validate the effectiveness of the proposed methods and highlight the computational efficiency of the iterative distributed estimator.
ISSN:2331-8422
Baliabidea:Engineering Database