Iterative Distributed Multinomial Regression
保存先:
| 出版年: | arXiv.org (Dec 2, 2024), p. n/a |
|---|---|
| 第一著者: | |
| その他の著者: | , |
| 出版事項: |
Cornell University Library, arXiv.org
|
| 主題: | |
| オンライン・アクセス: | Citation/Abstract Full text outside of ProQuest |
| タグ: |
タグなし, このレコードへの初めてのタグを付けませんか!
|
| 抄録: | This article introduces an iterative distributed computing estimator for the multinomial logistic regression model with large choice sets. Compared to the maximum likelihood estimator, the proposed iterative distributed estimator achieves significantly faster computation and, when initialized with a consistent estimator, attains asymptotic efficiency under a weak dominance condition. Additionally, we propose a parametric bootstrap inference procedure based on the iterative distributed estimator and establish its consistency. Extensive simulation studies validate the effectiveness of the proposed methods and highlight the computational efficiency of the iterative distributed estimator. |
|---|---|
| ISSN: | 2331-8422 |
| ソース: | Engineering Database |