Iterative Distributed Multinomial Regression

Shranjeno v:
Bibliografske podrobnosti
izdano v:arXiv.org (Dec 2, 2024), p. n/a
Glavni avtor: Fan, Yanqin
Drugi avtorji: Okar, Yigit, Shi, Xuetao
Izdano:
Cornell University Library, arXiv.org
Teme:
Online dostop:Citation/Abstract
Full text outside of ProQuest
Oznake: Označite
Brez oznak, prvi označite!
Opis
Resumen:This article introduces an iterative distributed computing estimator for the multinomial logistic regression model with large choice sets. Compared to the maximum likelihood estimator, the proposed iterative distributed estimator achieves significantly faster computation and, when initialized with a consistent estimator, attains asymptotic efficiency under a weak dominance condition. Additionally, we propose a parametric bootstrap inference procedure based on the iterative distributed estimator and establish its consistency. Extensive simulation studies validate the effectiveness of the proposed methods and highlight the computational efficiency of the iterative distributed estimator.
ISSN:2331-8422
Fuente:Engineering Database