A Noise is Worth Diffusion Guidance

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 5, 2024), p. n/a
Autor principal: Ahn, Donghoon
Altres autors: Kang, Jiwon, Lee, Sanghyun, Min, Jaewon, Kim, Minjae, Jang, Wooseok, Cho, Hyoungwon, Sayak, Paul, Kim, SeonHwa, Cha, Eunju, Jin, Kyong Hwan, Kim, Seungryong
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Resum:Diffusion models excel in generating high-quality images. However, current diffusion models struggle to produce reliable images without guidance methods, such as classifier-free guidance (CFG). Are guidance methods truly necessary? Observing that noise obtained via diffusion inversion can reconstruct high-quality images without guidance, we focus on the initial noise of the denoising pipeline. By mapping Gaussian noise to `guidance-free noise', we uncover that small low-magnitude low-frequency components significantly enhance the denoising process, removing the need for guidance and thus improving both inference throughput and memory. Expanding on this, we propose \ours, a novel method that replaces guidance methods with a single refinement of the initial noise. This refined noise enables high-quality image generation without guidance, within the same diffusion pipeline. Our noise-refining model leverages efficient noise-space learning, achieving rapid convergence and strong performance with just 50K text-image pairs. We validate its effectiveness across diverse metrics and analyze how refined noise can eliminate the need for guidance. See our project page: https://cvlab-kaist.github.io/NoiseRefine/.
ISSN:2331-8422
Font:Engineering Database