A Noise is Worth Diffusion Guidance
Uloženo v:
| Vydáno v: | arXiv.org (Dec 5, 2024), p. n/a |
|---|---|
| Hlavní autor: | |
| Další autoři: | , , , , , , , , , , |
| Vydáno: |
Cornell University Library, arXiv.org
|
| Témata: | |
| On-line přístup: | Citation/Abstract Full text outside of ProQuest |
| Tagy: |
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstrakt: | Diffusion models excel in generating high-quality images. However, current diffusion models struggle to produce reliable images without guidance methods, such as classifier-free guidance (CFG). Are guidance methods truly necessary? Observing that noise obtained via diffusion inversion can reconstruct high-quality images without guidance, we focus on the initial noise of the denoising pipeline. By mapping Gaussian noise to `guidance-free noise', we uncover that small low-magnitude low-frequency components significantly enhance the denoising process, removing the need for guidance and thus improving both inference throughput and memory. Expanding on this, we propose \ours, a novel method that replaces guidance methods with a single refinement of the initial noise. This refined noise enables high-quality image generation without guidance, within the same diffusion pipeline. Our noise-refining model leverages efficient noise-space learning, achieving rapid convergence and strong performance with just 50K text-image pairs. We validate its effectiveness across diverse metrics and analyze how refined noise can eliminate the need for guidance. See our project page: https://cvlab-kaist.github.io/NoiseRefine/. |
|---|---|
| ISSN: | 2331-8422 |
| Zdroj: | Engineering Database |