Deep Neural Network-Based Design of Planar Coils for Proximity Sensing Applications

保存先:
書誌詳細
出版年:Sensors vol. 25, no. 14 (2025), p. 4429-4453
第一著者: Lalla Abderraouf
その他の著者: Di Barba Paolo, Hausman Sławomir, Mognaschi Maria Evelina
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
抄録:This study develops a deep learning procedure able to identify a planar coil geometry, given the desired magnetic field map. This approach demonstrates its capability to discover suitable coil designs that produce desired field characteristics with high accuracy and efficiency. The generated coils show strong agreement with target magnetic fields, enabling manufacturers to achieve simpler structures and improved performance. This method is suitable for inductive proximity sensors, wireless power transfer systems, and electromagnetic compatibility applications, offering a powerful and flexible tool for advanced planar coil design.
ISSN:1424-8220
DOI:10.3390/s25144429
ソース:Health & Medical Collection