Deep Neural Network-Based Design of Planar Coils for Proximity Sensing Applications

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Sensors vol. 25, no. 14 (2025), p. 4429-4453
Egile nagusia: Lalla Abderraouf
Beste egile batzuk: Di Barba Paolo, Hausman Sławomir, Mognaschi Maria Evelina
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Laburpena:This study develops a deep learning procedure able to identify a planar coil geometry, given the desired magnetic field map. This approach demonstrates its capability to discover suitable coil designs that produce desired field characteristics with high accuracy and efficiency. The generated coils show strong agreement with target magnetic fields, enabling manufacturers to achieve simpler structures and improved performance. This method is suitable for inductive proximity sensors, wireless power transfer systems, and electromagnetic compatibility applications, offering a powerful and flexible tool for advanced planar coil design.
ISSN:1424-8220
DOI:10.3390/s25144429
Baliabidea:Health & Medical Collection