The RF–Absolute Gradient Method for Localizing Wheat Moisture Content’s Abnormal Regions with 2D Microwave Scanning Detection

Enregistré dans:
Détails bibliographiques
Publié dans:Agriculture vol. 15, no. 15 (2025), p. 1649-1671
Auteur principal: Dai, Dong
Autres auteurs: Wang, Zhenyu, Huang, Hao, Xu, Mao, Liu Yehong, Li, Hao, Chen, Du
Publié:
MDPI AG
Sujets:
Accès en ligne:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3239015483
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15151649  |2 doi 
035 |a 3239015483 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Dai, Dong  |u College of Engineering, China Agricultural University, Beijing 100083, China; daidong_zb@cau.edu.cn (D.D.); huanghao@cau.edu.cn (H.H.); sy20233071578@cau.edu.cn (H.L.); tchendu@cau.edu.cn (D.C.) 
245 1 |a The RF–Absolute Gradient Method for Localizing Wheat Moisture Content’s Abnormal Regions with 2D Microwave Scanning Detection 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a High moisture content (MC) harms wheat storage quality and readily leads to mold growth. Accurate localization of abnormal/high-moisture regions enables early warning, ensuring proper storage and reducing economic losses. The present study introduces the 2D microwave scanning method and investigates a novel localization method for addressing such a challenge. Both static and scanning experiments were performed on a developed mobile and non-destructive microwave detection system to quantify the MC of wheat and then locate abnormal moisture regions. For quantifying the wheat’s MC, a dual-parameter wheat MC prediction model with the random forest (RF) algorithm was constructed, achieving a high accuracy (R2 = 0.9846, MSE = 0.2768, MAE = 0.3986). MC scanning experiments were conducted by synchronized moving waveguides; the maximum absolute error of MC prediction was 0.565%, with a maximum relative error of 3.166%. Furthermore, both one- and two-dimensional localizing methods were proposed for localizing abnormal moisture regions. The one-dimensional method evaluated two approaches—attenuation value and absolute attenuation gradient—using computer simulation technology (CST) modeling and scanning experiments. The experimental results confirmed the superior performance of the absolute gradient method, with a center detection error of less than 12 mm in the anomalous wheat moisture region and a minimum width detection error of 1.4 mm. The study performed two-dimensional antenna scanning and effectively imaged the high-MC regions using phase delay analysis. The imaging results coincide with the actual locations of moisture anomaly regions. This study demonstrated a promising solution for accurately localizing the wheat’s abnormal/high-moisture regions with the use of an emerging microwave transmission method. 
653 |a Wheat 
653 |a Accuracy 
653 |a Mold growths 
653 |a Scanning 
653 |a Radio frequency identification 
653 |a Grain 
653 |a Moisture content 
653 |a Localization 
653 |a Food quality 
653 |a Economic impact 
653 |a Prediction models 
653 |a Error detection 
653 |a Water content 
653 |a Localization method 
653 |a Machine learning 
653 |a Microwave transmission 
653 |a Artificial intelligence 
653 |a Attenuation 
653 |a Neural networks 
653 |a Antennas 
653 |a Methods 
653 |a Algorithms 
653 |a Radio frequency 
653 |a Waveguides 
653 |a Environmental 
700 1 |a Wang, Zhenyu  |u School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China; wzyjsdx@ujs.edu.cn 
700 1 |a Huang, Hao  |u College of Engineering, China Agricultural University, Beijing 100083, China; daidong_zb@cau.edu.cn (D.D.); huanghao@cau.edu.cn (H.H.); sy20233071578@cau.edu.cn (H.L.); tchendu@cau.edu.cn (D.C.) 
700 1 |a Xu, Mao  |u College of Engineering, China Agricultural University, Beijing 100083, China; daidong_zb@cau.edu.cn (D.D.); huanghao@cau.edu.cn (H.H.); sy20233071578@cau.edu.cn (H.L.); tchendu@cau.edu.cn (D.C.) 
700 1 |a Liu Yehong  |u College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China; liuyehong@tjau.edu.cn 
700 1 |a Li, Hao  |u College of Engineering, China Agricultural University, Beijing 100083, China; daidong_zb@cau.edu.cn (D.D.); huanghao@cau.edu.cn (H.H.); sy20233071578@cau.edu.cn (H.L.); tchendu@cau.edu.cn (D.C.) 
700 1 |a Chen, Du  |u College of Engineering, China Agricultural University, Beijing 100083, China; daidong_zb@cau.edu.cn (D.D.); huanghao@cau.edu.cn (H.H.); sy20233071578@cau.edu.cn (H.L.); tchendu@cau.edu.cn (D.C.) 
773 0 |t Agriculture  |g vol. 15, no. 15 (2025), p. 1649-1671 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239015483/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3239015483/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239015483/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch