Exploring undergraduates’ computational thinking and human-computer interaction patterns in generative progressive prompt-assisted programming learning

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Educational Technology in Higher Education vol. 22, no. 1 (Dec 2025), p. 51
Autor principal: Gong, Xin
Otros Autores: Xu, Weiqi, Qiao, Ailing
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3245318634
003 UK-CbPIL
022 |a 2365-9440 
022 |a 1698-580X 
024 7 |a 10.1186/s41239-025-00552-y  |2 doi 
035 |a 3245318634 
045 2 |b d20251201  |b d20251231 
084 |a 142233  |2 nlm 
100 1 |a Gong, Xin  |u Capital Normal University, College of Education, Beijing, China (GRID:grid.253663.7) (ISNI:0000 0004 0368 505X) 
245 1 |a Exploring undergraduates’ computational thinking and human-computer interaction patterns in generative progressive prompt-assisted programming learning 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Programming education is burgeoning, but it encounters hurdles in implementing thinking-based intelligence instruction. The emergence of generative artificial intelligence, through the utilization of prompt engineering, not only provides meticulous feedback but also significantly elevates the quality and efficiency of human-computer interaction (HCI), thereby nurturing computational thinking (CT). This study aimed to reveal the developmental characteristics of CT and the “black box” of the HCI process through learning analytics methods (i.e., microgenetic analysis, lag sequential analysis, cluster analysis, paired t-tests). 44 college students participated in progressive prompt-assisted programming learning. The results indicated that generative progressive prompts significantly improved students’ CT and its sub-dimensions (i.e., creativity, problem-solving, algorithmic thinking, critical thinking, and cooperativity). Moreover, algorithmic thinking was identified as the core skill in CT development. Additionally, regarding students’ HCI patterns, students with low-level CT focused on more superficial interaction patterns, such as guided and exploratory behaviors, while students with high-level CT concentrated on more in-depth interaction patterns, including debating and summarizing behaviors. Based on our findings, educators in programming should incorporate generative prompts and tailor strategies to accommodate diverse HCI patterns among students with varying CT levels. 
653 |a Problem solving 
653 |a Debugging 
653 |a Generative artificial intelligence 
653 |a Prompt engineering 
653 |a Cognitive ability 
653 |a Human-computer interaction 
653 |a Feedback 
653 |a Cognition & reasoning 
653 |a Students 
653 |a Colleges & universities 
653 |a Cluster analysis 
653 |a Learning 
653 |a Human-computer interface 
653 |a Sequential analysis 
653 |a College students 
653 |a Programming 
653 |a Algorithms 
653 |a Critical thinking 
653 |a Large language models 
653 |a Education 
653 |a Human technology relationship 
653 |a Classroom communication 
653 |a Artificial intelligence 
653 |a Interpersonal communication 
653 |a Teachers 
653 |a Teaching 
653 |a Undergraduate students 
653 |a Tests 
653 |a Educational programs 
653 |a Learning Analytics 
653 |a Educational Benefits 
653 |a Guidance 
653 |a Educational Resources 
653 |a Influence of Technology 
653 |a Acceleration (Education) 
653 |a Computers 
653 |a Educational Technology 
653 |a Behavior Patterns 
653 |a Cooperative Learning 
653 |a Educational Change 
653 |a Creative Activities 
653 |a Feedback (Response) 
653 |a Creativity 
653 |a Language Processing 
653 |a Engineering Education 
653 |a Educational Environment 
653 |a Learner Engagement 
653 |a Constructivism (Learning) 
653 |a Educational Needs 
653 |a Cognitive Development 
700 1 |a Xu, Weiqi  |u Zhejiang University, College of Education, Hang-zhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X) 
700 1 |a Qiao, Ailing  |u Capital Normal University, College of Education, Beijing, China (GRID:grid.253663.7) (ISNI:0000 0004 0368 505X) 
773 0 |t International Journal of Educational Technology in Higher Education  |g vol. 22, no. 1 (Dec 2025), p. 51 
786 0 |d ProQuest  |t Political Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3245318634/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3245318634/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3245318634/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch