Using Model Predictive Control for Collision Avoidance During Lane Change Maneuvers in Autonomous Vehicles

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রকাশিত:International Journal of Software Science and Computational Intelligence vol. 17, no. 1 (2025), p. 1-22
প্রধান লেখক: Sarma, Kandarpa Kumar
অন্যান্য লেখক: Deka, Surajit, Misra, Aradhana, Tukaria, Ridip, Dutta, Ananya
প্রকাশিত:
IGI Global
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Citation/Abstract
Full Text - PDF
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
বিবরন
সার সংক্ষেপ:This paper proposes a novel approach for collision avoidance during lane changes using Model Predictive Control (MPC). The proposed method integrates real-time trajectory planning with dynamic vehicle modeling to predict and optimize the vehicle's motion over a finite time horizon. The paper presents the fundamental principles of MPC, its integration with vehicle dynamics, and its application to real-time control. Simulation results demonstrate the effectiveness of MPC in optimizing trajectory planning and ensuring safety under various traffic scenarios. This paper provides a comprehensive comparison of MPC with other control models such as Proportional-Integral-Derivative (PID) control, Rule-Based Control (RBC), and Reinforcement Learning (RL)-based approaches. Simulation results demonstrate the effectiveness of the proposed method in a variety of traffic scenarios, including high-density and mixed-traffic environments. Experimental results highlight the relative performance of these models under simulated environments in MATLAB.
আইএসএসএন:1942-9045
1942-9037
ডিওআই:10.4018/IJSSCI.391244
সম্পদ:Computer Science Database