Enhancing EEG Foundation Models via Dual-Branch Self-Distillation With Bi-Pretext Tasks

Uloženo v:
Podrobná bibliografie
Vydáno v:ProQuest Dissertations and Theses (2025)
Hlavní autor: Hung, Wei-Lun Allen
Vydáno:
ProQuest Dissertations & Theses
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Abstrakt:We present a dual-branch self-supervised learning framework for EEG representation learning, combining masked reconstruction and clustering-based objectives. Evaluated across five diverse downstream tasks, our method achieves state-of-the-art performance under both linear probing and fine-tuning protocols. Ablation and visualization analyses confirm the robustness and transferability of the learned features. Our approach offers a promising foundation for future advances in general-purpose EEG analysis.
ISBN:9798315778073
Zdroj:ProQuest Dissertations & Theses Global