Enhancing EEG Foundation Models via Dual-Branch Self-Distillation With Bi-Pretext Tasks

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:ProQuest Dissertations and Theses (2025)
Egile nagusia: Hung, Wei-Lun Allen
Argitaratua:
ProQuest Dissertations & Theses
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Laburpena:We present a dual-branch self-supervised learning framework for EEG representation learning, combining masked reconstruction and clustering-based objectives. Evaluated across five diverse downstream tasks, our method achieves state-of-the-art performance under both linear probing and fine-tuning protocols. Ablation and visualization analyses confirm the robustness and transferability of the learned features. Our approach offers a promising foundation for future advances in general-purpose EEG analysis.
ISBN:9798315778073
Baliabidea:ProQuest Dissertations & Theses Global