Enhancing EEG Foundation Models via Dual-Branch Self-Distillation With Bi-Pretext Tasks
Gorde:
| Argitaratua izan da: | ProQuest Dissertations and Theses (2025) |
|---|---|
| Egile nagusia: | |
| Argitaratua: |
ProQuest Dissertations & Theses
|
| Gaiak: | |
| Sarrera elektronikoa: | Citation/Abstract Full Text - PDF |
| Etiketak: |
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
| Laburpena: | We present a dual-branch self-supervised learning framework for EEG representation learning, combining masked reconstruction and clustering-based objectives. Evaluated across five diverse downstream tasks, our method achieves state-of-the-art performance under both linear probing and fine-tuning protocols. Ablation and visualization analyses confirm the robustness and transferability of the learned features. Our approach offers a promising foundation for future advances in general-purpose EEG analysis. |
|---|---|
| ISBN: | 9798315778073 |
| Baliabidea: | ProQuest Dissertations & Theses Global |