Enhancing EEG Foundation Models via Dual-Branch Self-Distillation With Bi-Pretext Tasks

保存先:
書誌詳細
出版年:ProQuest Dissertations and Theses (2025)
第一著者: Hung, Wei-Lun Allen
出版事項:
ProQuest Dissertations & Theses
主題:
オンライン・アクセス:Citation/Abstract
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
抄録:We present a dual-branch self-supervised learning framework for EEG representation learning, combining masked reconstruction and clustering-based objectives. Evaluated across five diverse downstream tasks, our method achieves state-of-the-art performance under both linear probing and fine-tuning protocols. Ablation and visualization analyses confirm the robustness and transferability of the learned features. Our approach offers a promising foundation for future advances in general-purpose EEG analysis.
ISBN:9798315778073
ソース:ProQuest Dissertations & Theses Global