Enhancing EEG Foundation Models via Dual-Branch Self-Distillation With Bi-Pretext Tasks

Shranjeno v:
Bibliografske podrobnosti
izdano v:ProQuest Dissertations and Theses (2025)
Glavni avtor: Hung, Wei-Lun Allen
Izdano:
ProQuest Dissertations & Theses
Teme:
Online dostop:Citation/Abstract
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!
Opis
Resumen:We present a dual-branch self-supervised learning framework for EEG representation learning, combining masked reconstruction and clustering-based objectives. Evaluated across five diverse downstream tasks, our method achieves state-of-the-art performance under both linear probing and fine-tuning protocols. Ablation and visualization analyses confirm the robustness and transferability of the learned features. Our approach offers a promising foundation for future advances in general-purpose EEG analysis.
ISBN:9798315778073
Fuente:ProQuest Dissertations & Theses Global