MixMAS: A Framework for Sampling-Based Mixer Architecture Search for Multimodal Fusion and Learning
সংরক্ষণ করুন:
| প্রকাশিত: | arXiv.org (Dec 24, 2024), p. n/a |
|---|---|
| প্রধান লেখক: | |
| অন্যান্য লেখক: | , , , |
| প্রকাশিত: |
Cornell University Library, arXiv.org
|
| বিষয়গুলি: | |
| অনলাইন ব্যবহার করুন: | Citation/Abstract Full text outside of ProQuest |
| ট্যাগগুলো: |
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
|
| সার সংক্ষেপ: | Choosing a suitable deep learning architecture for multimodal data fusion is a challenging task, as it requires the effective integration and processing of diverse data types, each with distinct structures and characteristics. In this paper, we introduce MixMAS, a novel framework for sampling-based mixer architecture search tailored to multimodal learning. Our approach automatically selects the optimal MLP-based architecture for a given multimodal machine learning (MML) task. Specifically, MixMAS utilizes a sampling-based micro-benchmarking strategy to explore various combinations of modality-specific encoders, fusion functions, and fusion networks, systematically identifying the architecture that best meets the task's performance metrics. |
|---|---|
| আইএসএসএন: | 2331-8422 |
| সম্পদ: | Engineering Database |