MixMAS: A Framework for Sampling-Based Mixer Architecture Search for Multimodal Fusion and Learning

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:arXiv.org (Dec 24, 2024), p. n/a
Yazar: Chergui, Abdelmadjid
Diğer Yazarlar: Bezirganyan, Grigor, Sellami, Sana, Berti-Équille, Laure, Fournier, Sébastien
Baskı/Yayın Bilgisi:
Cornell University Library, arXiv.org
Konular:
Online Erişim:Citation/Abstract
Full text outside of ProQuest
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
Diğer Bilgiler
Özet:Choosing a suitable deep learning architecture for multimodal data fusion is a challenging task, as it requires the effective integration and processing of diverse data types, each with distinct structures and characteristics. In this paper, we introduce MixMAS, a novel framework for sampling-based mixer architecture search tailored to multimodal learning. Our approach automatically selects the optimal MLP-based architecture for a given multimodal machine learning (MML) task. Specifically, MixMAS utilizes a sampling-based micro-benchmarking strategy to explore various combinations of modality-specific encoders, fusion functions, and fusion networks, systematically identifying the architecture that best meets the task's performance metrics.
ISSN:2331-8422
Kaynak:Engineering Database